Abstract

Grating pairs are widely used for pulse compression and stretching. Normally, the two gratings are identical. We propose a very simple structure with double-line-density reflective gratings for pulse compression and generation of double pulses, which has the advantages of no material dispersion, compact in volume, simple in structure, etc. The use of reflective Dammann gratings fully demonstrated the principle of this structure. The output pulses are well verified by a standard frequency-resolved optical gating apparatus. This structure will be highly interesting in ultrashort pulse compression and other more practical applications of femtosecond laser pulses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. 5, 454-458 (1969).
    [CrossRef]
  2. D. N. Fittinghoff, B. C. Walker, J. A. Squier, and C. S. Tóth, "Dispersion considerations in ultrafast CPA systems," IEEE J. Quantum Electron. 4, 430-440 (1998).
    [CrossRef]
  3. D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti:sapphire laser," Opt. Lett. 16, 42-44 (1991).
    [CrossRef] [PubMed]
  4. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer coatings for broad-band dispersion control in femtosecond lasers," Opt. Lett. 19, 201-203 (1994).
    [CrossRef] [PubMed]
  5. G. Steinmeyer, "Femtosecond dispersion compensation with multilayer coatings: toward the optical octave," Appl. Opt. 45, 1484-1490 (2006).
    [CrossRef] [PubMed]
  6. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
    [CrossRef]
  7. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H. J. Fuchs, E. B. Kley, A. Tünnermann, M. Jup, and D. Ristau, "Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems," Appl. Opt. 42, 6934-6938 (2003).
    [CrossRef] [PubMed]
  8. J. Néauport, E. Journot, G. Gaborit, and P. Bouchut, "Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser magajoule facilities," Appl. Opt. 44, 3143-3152 (2005).
    [CrossRef] [PubMed]
  9. G. Li, C. Zhou, and E. Dai, "Splitting of femtosecond laser pulses by using a Dammann grating and compensation gratings," J. Opt. Soc. Am. A 22, 767-772 (2005).
    [CrossRef]
  10. E. Dai, C. Zhou, and G. Li, "Dammann SHG-FROG for characterization of the ultrashort optical pulses," Opt. Express 13, 6145-6152 (2005).
    [CrossRef] [PubMed]
  11. B. Bai, C. Zhou, E. Dai, and J. Zheng, "Generation of double pulses in-line by using reflective Dammann gratings," Optik (Stuttgart) (to be published).
  12. O. E. Martinez, "Grating and prism compressors in the case of finite beam size," J. Opt. Soc. Am. B 3, 929-934 (1986).
    [CrossRef]
  13. S. Akturk, M. Kimmel, P. O'Shea, and R. Trebino, "Measuring spatial chirp in ultrashort pulses using single-shot Frequency-Resolved Optical Gating," Opt. Express 11, 68-78 (2003).
    [CrossRef] [PubMed]
  14. S. Akturk, X. Gu, E. Zeek, and R. Tribino, "Pulse-front tilt caused by spatial and temporal chirp," Opt. Express 12, 4399-4410 (2004).
    [CrossRef] [PubMed]
  15. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, "The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams," Opt. Express 17, 8642-9661 (2005).
    [CrossRef]
  16. C. Zhou and L. Liu, "Numerical study of Dammann array illuminators," Appl. Opt. 34, 5961-5969 (1995).
    [CrossRef] [PubMed]
  17. S. Wang, C. Zhou, H. Ru, and Y. Zhang, "Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology," Appl. Opt. 44, 4429-4434 (2005).
    [CrossRef] [PubMed]
  18. S. Wang, C. Zhou, Y. Zhang, and H. Ru, "Deep-etchedhigh-density fused-silica transmission gratings with high efficiency at a wavelength of 1550nm," Appl. Opt. 45, 2567-2571 (2006).
    [CrossRef] [PubMed]
  19. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
    [CrossRef]
  20. J. Kim, J. R. Birge, V. Sharma, J. G. Fujimoto, and F. X. Kärtner, "Ultrabroadband beam splitter with matched group-delay dispersion," Opt. Lett. 30, 1569-1571 (2005).
    [CrossRef] [PubMed]
  21. F. Lindner, G. G. Paulus, F. Grasbon, A. Freischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
    [CrossRef]
  22. C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
    [CrossRef]

2006 (2)

2005 (6)

2004 (1)

2003 (2)

2002 (1)

F. Lindner, G. G. Paulus, F. Grasbon, A. Freischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
[CrossRef]

1999 (1)

C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

1998 (1)

D. N. Fittinghoff, B. C. Walker, J. A. Squier, and C. S. Tóth, "Dispersion considerations in ultrafast CPA systems," IEEE J. Quantum Electron. 4, 430-440 (1998).
[CrossRef]

1997 (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

1995 (1)

1994 (1)

1991 (1)

1986 (1)

1985 (1)

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

1969 (1)

E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

Akturk, S.

Bai, B.

B. Bai, C. Zhou, E. Dai, and J. Zheng, "Generation of double pulses in-line by using reflective Dammann gratings," Optik (Stuttgart) (to be published).

Birge, J. R.

Bouchut, P.

Clausnitzer, T.

Dai, E.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Ferencz, K.

Fittinghoff, D. N.

D. N. Fittinghoff, B. C. Walker, J. A. Squier, and C. S. Tóth, "Dispersion considerations in ultrafast CPA systems," IEEE J. Quantum Electron. 4, 430-440 (1998).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Freischuh, A.

F. Lindner, G. G. Paulus, F. Grasbon, A. Freischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
[CrossRef]

Fuchs, H. J.

Fujimoto, J. G.

Gabolde, P.

S. Akturk, X. Gu, P. Gabolde, and R. Trebino, "The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams," Opt. Express 17, 8642-9661 (2005).
[CrossRef]

Gaborit, G.

Grasbon, F.

F. Lindner, G. G. Paulus, F. Grasbon, A. Freischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
[CrossRef]

Gu, X.

S. Akturk, X. Gu, P. Gabolde, and R. Trebino, "The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams," Opt. Express 17, 8642-9661 (2005).
[CrossRef]

S. Akturk, X. Gu, E. Zeek, and R. Tribino, "Pulse-front tilt caused by spatial and temporal chirp," Opt. Express 12, 4399-4410 (2004).
[CrossRef] [PubMed]

Iaconis, C.

C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

Journot, E.

Jup, M.

Kärtner, F. X.

Kean, P. N.

Kim, J.

Kimmel, M.

Kley, E. B.

Krausz, F.

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Li, G.

Limpert, J.

Lindner, F.

F. Lindner, G. G. Paulus, F. Grasbon, A. Freischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
[CrossRef]

Liu, L.

Martinez, O. E.

Mourou, G.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Néauport, J.

O'Shea, P.

Paulus, G. G.

F. Lindner, G. G. Paulus, F. Grasbon, A. Freischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
[CrossRef]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Ristau, D.

Ru, H.

Sharma, V.

Sibbett, W.

Spence, D. E.

Spielmann, C.

Squier, J. A.

D. N. Fittinghoff, B. C. Walker, J. A. Squier, and C. S. Tóth, "Dispersion considerations in ultrafast CPA systems," IEEE J. Quantum Electron. 4, 430-440 (1998).
[CrossRef]

Steinmeyer, G.

Strickland, D.

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Szipöcs, R.

Tóth, C. S.

D. N. Fittinghoff, B. C. Walker, J. A. Squier, and C. S. Tóth, "Dispersion considerations in ultrafast CPA systems," IEEE J. Quantum Electron. 4, 430-440 (1998).
[CrossRef]

Treacy, E. B.

E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

Trebino, R.

S. Akturk, X. Gu, P. Gabolde, and R. Trebino, "The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams," Opt. Express 17, 8642-9661 (2005).
[CrossRef]

S. Akturk, M. Kimmel, P. O'Shea, and R. Trebino, "Measuring spatial chirp in ultrashort pulses using single-shot Frequency-Resolved Optical Gating," Opt. Express 11, 68-78 (2003).
[CrossRef] [PubMed]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Tribino, R.

Tünnermann, A.

Walker, B. C.

D. N. Fittinghoff, B. C. Walker, J. A. Squier, and C. S. Tóth, "Dispersion considerations in ultrafast CPA systems," IEEE J. Quantum Electron. 4, 430-440 (1998).
[CrossRef]

Walmsley, I. A.

C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

Walther, H.

F. Lindner, G. G. Paulus, F. Grasbon, A. Freischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
[CrossRef]

Wang, S.

Zeek, E.

Zellmer, H.

Zhang, Y.

Zheng, J.

B. Bai, C. Zhou, E. Dai, and J. Zheng, "Generation of double pulses in-line by using reflective Dammann gratings," Optik (Stuttgart) (to be published).

Zhou, C.

Zöllner, K.

Appl. Opt. (6)

IEEE J. Quantum Electron. (4)

E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

D. N. Fittinghoff, B. C. Walker, J. A. Squier, and C. S. Tóth, "Dispersion considerations in ultrafast CPA systems," IEEE J. Quantum Electron. 4, 430-440 (1998).
[CrossRef]

F. Lindner, G. G. Paulus, F. Grasbon, A. Freischuh, and H. Walther, "Dispersion control in a 100-kHz-repetition-rate 35-fs Ti:sapphire regenerative amplifier system," IEEE J. Quantum Electron. 38, 1465-1470 (2002).
[CrossRef]

C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Optik (Stuttgart) (1)

B. Bai, C. Zhou, E. Dai, and J. Zheng, "Generation of double pulses in-line by using reflective Dammann gratings," Optik (Stuttgart) (to be published).

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Double-line-density grating structure for compression of femtosecond laser pulses. The line density of the second grating (Grating II) is double the first grating (Grating I), so that the input femtosecond laser pulse is diffracted by the first grating to the second grating, and it will be diffracted back by the second grating to the first one. After the returned femtosecond laser pulse is diffracted again by the first grating, the output laser pulse will be compressed if the input femtosecond laser pulse is positively chirped.

Fig. 2
Fig. 2

Output pulse width (FWHM) is shown as a function of the perpendicular distance between two gratings for the different line densities. The density shown here is that of the first grating. The second grating has the doubled line density of the first one. The input pulse has the center wavelength of 812 nm , the FWHM of 88.74 fs , and the temporal chirp of 3.03 × 10 4 rad fs 2 . The compressed output pulse has the FWHM of 44.68 fs . The marked point is implemented in the experiment.

Fig. 3
Fig. 3

Double-line-density structure is shown for generation of double femtosecond laser pulses.

Fig. 4
Fig. 4

Group-velocity dispersion factor B is shown as a function of the grating period. The center wavelength of the input pulse is 812 nm ; the perpendicular distance between two gratings is 25 cm . The marked point is implemented in the experiment.

Fig. 5
Fig. 5

Retrieved output pulse. (a) Trace of the output single pulse, (b) input pulse and the compressed output pulse in time domain. The FWHM of the output pulse is 48.7 % of that of the input pulse.

Fig. 6
Fig. 6

Retrieved output double pulses with a time interval of 144.4 fs . (a) Trace of the double pulse, (b) double pulse in time domain, (c) double pulse in frequency domain. The solid curves show the intensity and the dashed curves show the phase.

Tables (1)

Tables Icon

Table 1 Characterization of the Generated Double Pulses

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

sin θ 1 = λ d 1 ,
sin θ 2 + sin θ 1 = λ d 2 = 2 λ d 1 ,
θ 1 = θ 2 .
α = 1 P , β = Q P ,
P = [ 1 ( λ 0 d 1 ) 2 ] 1 2 , Q = 1 2 π c λ 0 2 d 1 .
E i ( x , y , t ) = exp ( 2 ln 2 t 2 τ 2 ) exp ( i b t 2 ) exp ( i k ( x 2 + y 2 ) 2 q ( d ) ) ,
q ( z ) = z + i π σ 2 λ ,
E i ( x , y , ω ) = E i ( ω ) exp ( i k ( x 2 + y 2 ) 2 q ( d ) ) ,
E i ( ω ) = exp ( ln 2 τ 2 ω 2 8 ( ln 2 ) 2 + 2 b 2 τ 4 ) exp ( i b τ 4 ω 2 ( 4 ln 2 ) 2 + ( 2 b τ 2 ) 2 ) .
E o ( x , y , ω ) E i ( ω ) exp ( i k β 2 ω 2 z ) exp ( i k 2 y 2 q ( d + 2 z + z 2 ) ) × exp ( i k 2 x 2 q ( d + 2 α 2 z + z 2 ) ) .
E o ( ω ) = exp ( C ω 2 ) ,
C = ln 2 τ 2 8 ( ln 2 ) 2 + 2 b 2 τ 4 + i ( b τ 4 ( 4 ln 2 ) 2 + ( 2 b τ 2 ) 2 k β 2 z ) = 1 8 ln 2 [ τ 2 1 + A 2 τ 4 + i ( A τ 4 1 + A 2 τ 4 B ) ] .
τ o = 1 [ Re ( 1 ( 8 ln 2 C ) ) ] 1 2 = τ [ ( 1 A B ) 2 + B 2 τ 4 ] 1 2 .
τ o min = τ A 2 τ 4 + 1 .

Metrics