Abstract

The ultraviolet upconversion luminescence of the Tm3+ ion sensitized by the Yb3+ ion in fluoride glass as excited by a 975nm diode laser was studied. Two typical ultraviolet upconversion luminescence lines positioned at 290.6 and 362.0nm were found and could be identified as the fluorescence transitions of I61H63 and D21H63, respectively. The elaborative measurement of the variation of upconversion luminescence intensity F as a function of the 975nm pumping laser power P has proven that the luminescence lines result from five-photon and six-photon upconversion processes, respectively. To our best knowledge, the finding of six-photon ultraviolet upconversion luminescence is original. Moreover, a novel characteristic upconversion luminescence saturation phenomenon was observed, as the logFlogP curve of upconversion fluorescence versus pumping laser power is a straight line, while the slopes of these logFlogP plots are apparently smaller than the value determined by the normal multiphoton relation. When the pumping laser spot was increased, the slopes were enhanced noticeably from small values to those that are equal to or near what a normal multiphoton relation would determine. The mechanism of this characteristic saturation phenomenon is the energy expansion resulting from the energy resonant migration among Yb3+ ions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Reisfeld and C. K. Jørgensen, Lasers and Excited States of Rare Earths (Springer-Verlag, 1977).
    [CrossRef]
  2. J. F. Suyver, A. Aebischer, S. Garcia-Revilla, P. Gerner, and H. U. Gudel, "Anomalous power dependence of sensitized upconversion luminescence," Phys. Rev. B 71, 125123 (2005).
    [CrossRef]
  3. T. Miyakawa and D. L. Dexter, "Cooperative and stepwise excitation of luminescence: trivalent rare-earth ions in Yb3+-sensitized crystals," Phys. Rev. B 1, 70-80 (1970).
    [CrossRef]
  4. T. Miyakawa and D. L. Dexter, "Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids," Phys. Rev. B 1, 2961-2969 (1970).
    [CrossRef]
  5. M. A. Noginov, M. Curley, P. Venkateswariu, and A. Williams, "Excitation scheme for the upper energy levels in a Tm:Yb:BaY2F8 laser crystal," J. Opt. Soc. Am. B 14, 2126-2137 (1997).
    [CrossRef]
  6. R. Balda, A. J. Garcia-Adeva, M. Voda, and J. Fernandez, "Upconversion processes in Er3+-doped KPb2Cl5," Phys. Rev. B 69, 205203 (2004).
    [CrossRef]
  7. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, "A three-color, solid-state, three-dimensional display," Science 273, 1185-1187 (1996).
    [CrossRef]
  8. X. B. Chen and Y. X. Nie, "Principle demonstration of 3D volumetric display achieved by PrYb co-doped material," Proc. SPIE 4221, 73-77 (2000).
    [CrossRef]
  9. S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Wetch, "Laser diode pumped 106mW blue upconversion fiber laser," Appl. Phys. Lett. 67, 1815-1817 (1995).
    [CrossRef]
  10. F. Auzel, "Upconversion and anti-Stokes processes with f and d ions in solids," Chem. Rev. (Washington, D.C.) 104, 141-173 (2004).
  11. G. S. Qin, W. P. Qin, C. F. Wu, S. H. Huang, D. Zhao, J. Zhang, and S. Z. Lu, "Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation," Opt. Commun. 242, 215-219 (2004).
    [CrossRef]
  12. X. B. Chen, F. C. Zhang, and L. Chen, "Up-conversion luminescence research of Er(0:5):ZBLAN material for volumetric display application when excited by 1520nm laser," Chin. Phys. 12, 1451-1458 (2003).
    [CrossRef]
  13. M. P. Hehlen, A. Kuditcher, A. L. Lenef, H. Ni, Q. Shu, S. C. Rand, J. Rai, and S. Rai, "Nonradiative dynamics of avalanche upconversion in Tm:LiYF4," Phys. Rev. B 61, 1116-1128 (2000).
    [CrossRef]
  14. W. T. Carnall, R. Fields, and K. T. Rajnank, "Electronic energy levels in the trivalent lanthanide aquo ions," J. Chem. Phys. 49, 4424-4442 (1968).
    [CrossRef]
  15. I. R. Martin, J. Mendez-Ramos, V. D. Rodriguez, J. J. Romero, and J. Garcia-Sole, "Increase of the 800nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions," Opt. Mater. 22, 327-333 (2003).
    [CrossRef]
  16. J. J. Owen, A. K. Cheetham, and R. A. Mcfarlane, "Orientation-dependent fluorescence studies and spectroscopic analysis of doped barium yttrium fluoride upconversion laser crystals (BaY2−x−yYbxTmyF8)," J. Opt. Soc. Am. B 15, 684-693 (1998).
    [CrossRef]
  17. S. F. Li, Q. Y. Zhang, and Y. P. Lee, "Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses," J. Appl. Phys. 96, 4746-4750 (2004).
    [CrossRef]
  18. X. B. Chen and Z. F. Song, "An initial experimental comparative investigation of direct and indirect up-conversion sensitization of the G41 level of Tm, Yb co-doped material," Opt. Commun. 181, 171-181 (2000).
    [CrossRef]
  19. A. Biswas, G. S. Maciel, C. S. Friend, and P. N. Prasad, "Upconversion properties of a transparent Er3+-Yb3+ co-doped LaF3-SiO2 glass-ceramics prepared by sol-gel method," J. Non-Cryst. Solids 316, 393-397 (2003).
    [CrossRef]
  20. P. V. dos Santos, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, and A. S. Gouveja-Neto, "Blue cooperative luminescence in Yb3+-doped tellurite glasses excited at 1.064μm," J. Chem. Phys. 116, 6772-6776 (2002).
    [CrossRef]
  21. S. Sergeyev, S. Popov, D. Khoptyar, A. T. Friberg, and D. Flavin, "Statistical model of migration-assisted upconversion in a high-concentration erbium-doped fiber amplifier," J. Opt. Soc. Am. B 23, 1540-1543 (2006).
    [CrossRef]
  22. Alexander Kaminskii, Laser Crystals: Their Physics (Springer, 1981).
  23. S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, "Energy back transfer, migration and energy transfer (Yb-to-Er andEr-to-Yb) processes in Yb,Er:YAG," J. Lumin. 102, 694-698 (2003).
    [CrossRef]
  24. L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, "Mechanism of the Yb-Er energy transfer in fluorozirconate glass," J. Appl. Phys. 93, 3873-3880 (2003).
    [CrossRef]
  25. X. B. Chen, "Research on the upconversion luminescence of Tm3+ ion in crystal and amorphous pentaphosphate materials," J. Lumin. 69, 151-160 (1996).
    [CrossRef]

2006 (1)

2005 (1)

J. F. Suyver, A. Aebischer, S. Garcia-Revilla, P. Gerner, and H. U. Gudel, "Anomalous power dependence of sensitized upconversion luminescence," Phys. Rev. B 71, 125123 (2005).
[CrossRef]

2004 (4)

S. F. Li, Q. Y. Zhang, and Y. P. Lee, "Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses," J. Appl. Phys. 96, 4746-4750 (2004).
[CrossRef]

R. Balda, A. J. Garcia-Adeva, M. Voda, and J. Fernandez, "Upconversion processes in Er3+-doped KPb2Cl5," Phys. Rev. B 69, 205203 (2004).
[CrossRef]

F. Auzel, "Upconversion and anti-Stokes processes with f and d ions in solids," Chem. Rev. (Washington, D.C.) 104, 141-173 (2004).

G. S. Qin, W. P. Qin, C. F. Wu, S. H. Huang, D. Zhao, J. Zhang, and S. Z. Lu, "Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation," Opt. Commun. 242, 215-219 (2004).
[CrossRef]

2003 (5)

X. B. Chen, F. C. Zhang, and L. Chen, "Up-conversion luminescence research of Er(0:5):ZBLAN material for volumetric display application when excited by 1520nm laser," Chin. Phys. 12, 1451-1458 (2003).
[CrossRef]

A. Biswas, G. S. Maciel, C. S. Friend, and P. N. Prasad, "Upconversion properties of a transparent Er3+-Yb3+ co-doped LaF3-SiO2 glass-ceramics prepared by sol-gel method," J. Non-Cryst. Solids 316, 393-397 (2003).
[CrossRef]

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, "Energy back transfer, migration and energy transfer (Yb-to-Er andEr-to-Yb) processes in Yb,Er:YAG," J. Lumin. 102, 694-698 (2003).
[CrossRef]

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, "Mechanism of the Yb-Er energy transfer in fluorozirconate glass," J. Appl. Phys. 93, 3873-3880 (2003).
[CrossRef]

I. R. Martin, J. Mendez-Ramos, V. D. Rodriguez, J. J. Romero, and J. Garcia-Sole, "Increase of the 800nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions," Opt. Mater. 22, 327-333 (2003).
[CrossRef]

2002 (1)

P. V. dos Santos, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, and A. S. Gouveja-Neto, "Blue cooperative luminescence in Yb3+-doped tellurite glasses excited at 1.064μm," J. Chem. Phys. 116, 6772-6776 (2002).
[CrossRef]

2000 (3)

X. B. Chen and Z. F. Song, "An initial experimental comparative investigation of direct and indirect up-conversion sensitization of the G41 level of Tm, Yb co-doped material," Opt. Commun. 181, 171-181 (2000).
[CrossRef]

M. P. Hehlen, A. Kuditcher, A. L. Lenef, H. Ni, Q. Shu, S. C. Rand, J. Rai, and S. Rai, "Nonradiative dynamics of avalanche upconversion in Tm:LiYF4," Phys. Rev. B 61, 1116-1128 (2000).
[CrossRef]

X. B. Chen and Y. X. Nie, "Principle demonstration of 3D volumetric display achieved by PrYb co-doped material," Proc. SPIE 4221, 73-77 (2000).
[CrossRef]

1998 (1)

1997 (1)

1996 (2)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, "A three-color, solid-state, three-dimensional display," Science 273, 1185-1187 (1996).
[CrossRef]

X. B. Chen, "Research on the upconversion luminescence of Tm3+ ion in crystal and amorphous pentaphosphate materials," J. Lumin. 69, 151-160 (1996).
[CrossRef]

1995 (1)

S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Wetch, "Laser diode pumped 106mW blue upconversion fiber laser," Appl. Phys. Lett. 67, 1815-1817 (1995).
[CrossRef]

1970 (2)

T. Miyakawa and D. L. Dexter, "Cooperative and stepwise excitation of luminescence: trivalent rare-earth ions in Yb3+-sensitized crystals," Phys. Rev. B 1, 70-80 (1970).
[CrossRef]

T. Miyakawa and D. L. Dexter, "Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids," Phys. Rev. B 1, 2961-2969 (1970).
[CrossRef]

1968 (1)

W. T. Carnall, R. Fields, and K. T. Rajnank, "Electronic energy levels in the trivalent lanthanide aquo ions," J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

Aebischer, A.

J. F. Suyver, A. Aebischer, S. Garcia-Revilla, P. Gerner, and H. U. Gudel, "Anomalous power dependence of sensitized upconversion luminescence," Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Auzel, F.

F. Auzel, "Upconversion and anti-Stokes processes with f and d ions in solids," Chem. Rev. (Washington, D.C.) 104, 141-173 (2004).

Balda, R.

R. Balda, A. J. Garcia-Adeva, M. Voda, and J. Fernandez, "Upconversion processes in Er3+-doped KPb2Cl5," Phys. Rev. B 69, 205203 (2004).
[CrossRef]

Barbosa-Garcia, O.

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, "Energy back transfer, migration and energy transfer (Yb-to-Er andEr-to-Yb) processes in Yb,Er:YAG," J. Lumin. 102, 694-698 (2003).
[CrossRef]

Biswas, A.

A. Biswas, G. S. Maciel, C. S. Friend, and P. N. Prasad, "Upconversion properties of a transparent Er3+-Yb3+ co-doped LaF3-SiO2 glass-ceramics prepared by sol-gel method," J. Non-Cryst. Solids 316, 393-397 (2003).
[CrossRef]

Carnall, W. T.

W. T. Carnall, R. Fields, and K. T. Rajnank, "Electronic energy levels in the trivalent lanthanide aquo ions," J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

Cheetham, A. K.

Chen, L.

X. B. Chen, F. C. Zhang, and L. Chen, "Up-conversion luminescence research of Er(0:5):ZBLAN material for volumetric display application when excited by 1520nm laser," Chin. Phys. 12, 1451-1458 (2003).
[CrossRef]

Chen, X. B.

X. B. Chen, F. C. Zhang, and L. Chen, "Up-conversion luminescence research of Er(0:5):ZBLAN material for volumetric display application when excited by 1520nm laser," Chin. Phys. 12, 1451-1458 (2003).
[CrossRef]

X. B. Chen and Y. X. Nie, "Principle demonstration of 3D volumetric display achieved by PrYb co-doped material," Proc. SPIE 4221, 73-77 (2000).
[CrossRef]

X. B. Chen and Z. F. Song, "An initial experimental comparative investigation of direct and indirect up-conversion sensitization of the G41 level of Tm, Yb co-doped material," Opt. Commun. 181, 171-181 (2000).
[CrossRef]

X. B. Chen, "Research on the upconversion luminescence of Tm3+ ion in crystal and amorphous pentaphosphate materials," J. Lumin. 69, 151-160 (1996).
[CrossRef]

Curley, M.

da Vila, L. D.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, "Mechanism of the Yb-Er energy transfer in fluorozirconate glass," J. Appl. Phys. 93, 3873-3880 (2003).
[CrossRef]

de Araujo, M. T.

P. V. dos Santos, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, and A. S. Gouveja-Neto, "Blue cooperative luminescence in Yb3+-doped tellurite glasses excited at 1.064μm," J. Chem. Phys. 116, 6772-6776 (2002).
[CrossRef]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, "Cooperative and stepwise excitation of luminescence: trivalent rare-earth ions in Yb3+-sensitized crystals," Phys. Rev. B 1, 70-80 (1970).
[CrossRef]

T. Miyakawa and D. L. Dexter, "Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids," Phys. Rev. B 1, 2961-2969 (1970).
[CrossRef]

Diaz-Torres, L. A.

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, "Energy back transfer, migration and energy transfer (Yb-to-Er andEr-to-Yb) processes in Yb,Er:YAG," J. Lumin. 102, 694-698 (2003).
[CrossRef]

dos Santos, P. V.

P. V. dos Santos, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, and A. S. Gouveja-Neto, "Blue cooperative luminescence in Yb3+-doped tellurite glasses excited at 1.064μm," J. Chem. Phys. 116, 6772-6776 (2002).
[CrossRef]

Downing, E.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, "A three-color, solid-state, three-dimensional display," Science 273, 1185-1187 (1996).
[CrossRef]

Fernandez, J.

R. Balda, A. J. Garcia-Adeva, M. Voda, and J. Fernandez, "Upconversion processes in Er3+-doped KPb2Cl5," Phys. Rev. B 69, 205203 (2004).
[CrossRef]

Fields, R.

W. T. Carnall, R. Fields, and K. T. Rajnank, "Electronic energy levels in the trivalent lanthanide aquo ions," J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

Flavin, D.

Friberg, A. T.

Friend, C. S.

A. Biswas, G. S. Maciel, C. S. Friend, and P. N. Prasad, "Upconversion properties of a transparent Er3+-Yb3+ co-doped LaF3-SiO2 glass-ceramics prepared by sol-gel method," J. Non-Cryst. Solids 316, 393-397 (2003).
[CrossRef]

Garcia-Adeva, A. J.

R. Balda, A. J. Garcia-Adeva, M. Voda, and J. Fernandez, "Upconversion processes in Er3+-doped KPb2Cl5," Phys. Rev. B 69, 205203 (2004).
[CrossRef]

Garcia-Revilla, S.

J. F. Suyver, A. Aebischer, S. Garcia-Revilla, P. Gerner, and H. U. Gudel, "Anomalous power dependence of sensitized upconversion luminescence," Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Garcia-Sole, J.

I. R. Martin, J. Mendez-Ramos, V. D. Rodriguez, J. J. Romero, and J. Garcia-Sole, "Increase of the 800nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions," Opt. Mater. 22, 327-333 (2003).
[CrossRef]

Gerner, P.

J. F. Suyver, A. Aebischer, S. Garcia-Revilla, P. Gerner, and H. U. Gudel, "Anomalous power dependence of sensitized upconversion luminescence," Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Gomes, L.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, "Mechanism of the Yb-Er energy transfer in fluorozirconate glass," J. Appl. Phys. 93, 3873-3880 (2003).
[CrossRef]

Gouveia, E. A.

P. V. dos Santos, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, and A. S. Gouveja-Neto, "Blue cooperative luminescence in Yb3+-doped tellurite glasses excited at 1.064μm," J. Chem. Phys. 116, 6772-6776 (2002).
[CrossRef]

Gouveja-Neto, A. S.

P. V. dos Santos, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, and A. S. Gouveja-Neto, "Blue cooperative luminescence in Yb3+-doped tellurite glasses excited at 1.064μm," J. Chem. Phys. 116, 6772-6776 (2002).
[CrossRef]

Gudel, H. U.

J. F. Suyver, A. Aebischer, S. Garcia-Revilla, P. Gerner, and H. U. Gudel, "Anomalous power dependence of sensitized upconversion luminescence," Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Hehlen, M. P.

M. P. Hehlen, A. Kuditcher, A. L. Lenef, H. Ni, Q. Shu, S. C. Rand, J. Rai, and S. Rai, "Nonradiative dynamics of avalanche upconversion in Tm:LiYF4," Phys. Rev. B 61, 1116-1128 (2000).
[CrossRef]

Hesselink, L.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, "A three-color, solid-state, three-dimensional display," Science 273, 1185-1187 (1996).
[CrossRef]

Hinjosa, S.

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, "Energy back transfer, migration and energy transfer (Yb-to-Er andEr-to-Yb) processes in Yb,Er:YAG," J. Lumin. 102, 694-698 (2003).
[CrossRef]

Huang, S. H.

G. S. Qin, W. P. Qin, C. F. Wu, S. H. Huang, D. Zhao, J. Zhang, and S. Z. Lu, "Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation," Opt. Commun. 242, 215-219 (2004).
[CrossRef]

Jørgensen, C. K.

R. Reisfeld and C. K. Jørgensen, Lasers and Excited States of Rare Earths (Springer-Verlag, 1977).
[CrossRef]

Kaminskii, Alexander

Alexander Kaminskii, Laser Crystals: Their Physics (Springer, 1981).

Khoptyar, D.

Kuditcher, A.

M. P. Hehlen, A. Kuditcher, A. L. Lenef, H. Ni, Q. Shu, S. C. Rand, J. Rai, and S. Rai, "Nonradiative dynamics of avalanche upconversion in Tm:LiYF4," Phys. Rev. B 61, 1116-1128 (2000).
[CrossRef]

Lee, Y. P.

S. F. Li, Q. Y. Zhang, and Y. P. Lee, "Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses," J. Appl. Phys. 96, 4746-4750 (2004).
[CrossRef]

Lenef, A. L.

M. P. Hehlen, A. Kuditcher, A. L. Lenef, H. Ni, Q. Shu, S. C. Rand, J. Rai, and S. Rai, "Nonradiative dynamics of avalanche upconversion in Tm:LiYF4," Phys. Rev. B 61, 1116-1128 (2000).
[CrossRef]

Li, S. F.

S. F. Li, Q. Y. Zhang, and Y. P. Lee, "Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses," J. Appl. Phys. 96, 4746-4750 (2004).
[CrossRef]

Lu, S. Z.

G. S. Qin, W. P. Qin, C. F. Wu, S. H. Huang, D. Zhao, J. Zhang, and S. Z. Lu, "Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation," Opt. Commun. 242, 215-219 (2004).
[CrossRef]

Macfarlane, R.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, "A three-color, solid-state, three-dimensional display," Science 273, 1185-1187 (1996).
[CrossRef]

Maciel, G. S.

A. Biswas, G. S. Maciel, C. S. Friend, and P. N. Prasad, "Upconversion properties of a transparent Er3+-Yb3+ co-doped LaF3-SiO2 glass-ceramics prepared by sol-gel method," J. Non-Cryst. Solids 316, 393-397 (2003).
[CrossRef]

Martin, I. R.

I. R. Martin, J. Mendez-Ramos, V. D. Rodriguez, J. J. Romero, and J. Garcia-Sole, "Increase of the 800nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions," Opt. Mater. 22, 327-333 (2003).
[CrossRef]

Mcfarlane, R. A.

Mehuys, D. G.

S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Wetch, "Laser diode pumped 106mW blue upconversion fiber laser," Appl. Phys. Lett. 67, 1815-1817 (1995).
[CrossRef]

Mendez-Ramos, J.

I. R. Martin, J. Mendez-Ramos, V. D. Rodriguez, J. J. Romero, and J. Garcia-Sole, "Increase of the 800nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions," Opt. Mater. 22, 327-333 (2003).
[CrossRef]

Meneses-Nava, M. A.

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, "Energy back transfer, migration and energy transfer (Yb-to-Er andEr-to-Yb) processes in Yb,Er:YAG," J. Lumin. 102, 694-698 (2003).
[CrossRef]

Messadeq, Y.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, "Mechanism of the Yb-Er energy transfer in fluorozirconate glass," J. Appl. Phys. 93, 3873-3880 (2003).
[CrossRef]

Miyakawa, T.

T. Miyakawa and D. L. Dexter, "Cooperative and stepwise excitation of luminescence: trivalent rare-earth ions in Yb3+-sensitized crystals," Phys. Rev. B 1, 70-80 (1970).
[CrossRef]

T. Miyakawa and D. L. Dexter, "Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids," Phys. Rev. B 1, 2961-2969 (1970).
[CrossRef]

Mosino, J. F.

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, "Energy back transfer, migration and energy transfer (Yb-to-Er andEr-to-Yb) processes in Yb,Er:YAG," J. Lumin. 102, 694-698 (2003).
[CrossRef]

Ni, H.

M. P. Hehlen, A. Kuditcher, A. L. Lenef, H. Ni, Q. Shu, S. C. Rand, J. Rai, and S. Rai, "Nonradiative dynamics of avalanche upconversion in Tm:LiYF4," Phys. Rev. B 61, 1116-1128 (2000).
[CrossRef]

Nie, Y. X.

X. B. Chen and Y. X. Nie, "Principle demonstration of 3D volumetric display achieved by PrYb co-doped material," Proc. SPIE 4221, 73-77 (2000).
[CrossRef]

Noginov, M. A.

Owen, J. J.

Popov, S.

Prasad, P. N.

A. Biswas, G. S. Maciel, C. S. Friend, and P. N. Prasad, "Upconversion properties of a transparent Er3+-Yb3+ co-doped LaF3-SiO2 glass-ceramics prepared by sol-gel method," J. Non-Cryst. Solids 316, 393-397 (2003).
[CrossRef]

Qin, G. S.

G. S. Qin, W. P. Qin, C. F. Wu, S. H. Huang, D. Zhao, J. Zhang, and S. Z. Lu, "Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation," Opt. Commun. 242, 215-219 (2004).
[CrossRef]

Qin, W. P.

G. S. Qin, W. P. Qin, C. F. Wu, S. H. Huang, D. Zhao, J. Zhang, and S. Z. Lu, "Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation," Opt. Commun. 242, 215-219 (2004).
[CrossRef]

Rai, J.

M. P. Hehlen, A. Kuditcher, A. L. Lenef, H. Ni, Q. Shu, S. C. Rand, J. Rai, and S. Rai, "Nonradiative dynamics of avalanche upconversion in Tm:LiYF4," Phys. Rev. B 61, 1116-1128 (2000).
[CrossRef]

Rai, S.

M. P. Hehlen, A. Kuditcher, A. L. Lenef, H. Ni, Q. Shu, S. C. Rand, J. Rai, and S. Rai, "Nonradiative dynamics of avalanche upconversion in Tm:LiYF4," Phys. Rev. B 61, 1116-1128 (2000).
[CrossRef]

Rajnank, K. T.

W. T. Carnall, R. Fields, and K. T. Rajnank, "Electronic energy levels in the trivalent lanthanide aquo ions," J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, "A three-color, solid-state, three-dimensional display," Science 273, 1185-1187 (1996).
[CrossRef]

Rand, S. C.

M. P. Hehlen, A. Kuditcher, A. L. Lenef, H. Ni, Q. Shu, S. C. Rand, J. Rai, and S. Rai, "Nonradiative dynamics of avalanche upconversion in Tm:LiYF4," Phys. Rev. B 61, 1116-1128 (2000).
[CrossRef]

Reisfeld, R.

R. Reisfeld and C. K. Jørgensen, Lasers and Excited States of Rare Earths (Springer-Verlag, 1977).
[CrossRef]

Ribeiro, S. J. L.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, "Mechanism of the Yb-Er energy transfer in fluorozirconate glass," J. Appl. Phys. 93, 3873-3880 (2003).
[CrossRef]

Rodriguez, V. D.

I. R. Martin, J. Mendez-Ramos, V. D. Rodriguez, J. J. Romero, and J. Garcia-Sole, "Increase of the 800nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions," Opt. Mater. 22, 327-333 (2003).
[CrossRef]

Romero, J. J.

I. R. Martin, J. Mendez-Ramos, V. D. Rodriguez, J. J. Romero, and J. Garcia-Sole, "Increase of the 800nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions," Opt. Mater. 22, 327-333 (2003).
[CrossRef]

Sanders, S.

S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Wetch, "Laser diode pumped 106mW blue upconversion fiber laser," Appl. Phys. Lett. 67, 1815-1817 (1995).
[CrossRef]

Santoyo, M. A.

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, "Energy back transfer, migration and energy transfer (Yb-to-Er andEr-to-Yb) processes in Yb,Er:YAG," J. Lumin. 102, 694-698 (2003).
[CrossRef]

Sergeyev, S.

Shu, Q.

M. P. Hehlen, A. Kuditcher, A. L. Lenef, H. Ni, Q. Shu, S. C. Rand, J. Rai, and S. Rai, "Nonradiative dynamics of avalanche upconversion in Tm:LiYF4," Phys. Rev. B 61, 1116-1128 (2000).
[CrossRef]

Song, Z. F.

X. B. Chen and Z. F. Song, "An initial experimental comparative investigation of direct and indirect up-conversion sensitization of the G41 level of Tm, Yb co-doped material," Opt. Commun. 181, 171-181 (2000).
[CrossRef]

Suyver, J. F.

J. F. Suyver, A. Aebischer, S. Garcia-Revilla, P. Gerner, and H. U. Gudel, "Anomalous power dependence of sensitized upconversion luminescence," Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Tarelho, L. V. G.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, "Mechanism of the Yb-Er energy transfer in fluorozirconate glass," J. Appl. Phys. 93, 3873-3880 (2003).
[CrossRef]

Venkateswariu, P.

Vermelho, M. V. D.

P. V. dos Santos, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, and A. S. Gouveja-Neto, "Blue cooperative luminescence in Yb3+-doped tellurite glasses excited at 1.064μm," J. Chem. Phys. 116, 6772-6776 (2002).
[CrossRef]

Voda, M.

R. Balda, A. J. Garcia-Adeva, M. Voda, and J. Fernandez, "Upconversion processes in Er3+-doped KPb2Cl5," Phys. Rev. B 69, 205203 (2004).
[CrossRef]

Waarts, R. G.

S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Wetch, "Laser diode pumped 106mW blue upconversion fiber laser," Appl. Phys. Lett. 67, 1815-1817 (1995).
[CrossRef]

Wetch, D. F.

S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Wetch, "Laser diode pumped 106mW blue upconversion fiber laser," Appl. Phys. Lett. 67, 1815-1817 (1995).
[CrossRef]

Williams, A.

Wu, C. F.

G. S. Qin, W. P. Qin, C. F. Wu, S. H. Huang, D. Zhao, J. Zhang, and S. Z. Lu, "Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation," Opt. Commun. 242, 215-219 (2004).
[CrossRef]

Zhang, F. C.

X. B. Chen, F. C. Zhang, and L. Chen, "Up-conversion luminescence research of Er(0:5):ZBLAN material for volumetric display application when excited by 1520nm laser," Chin. Phys. 12, 1451-1458 (2003).
[CrossRef]

Zhang, J.

G. S. Qin, W. P. Qin, C. F. Wu, S. H. Huang, D. Zhao, J. Zhang, and S. Z. Lu, "Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation," Opt. Commun. 242, 215-219 (2004).
[CrossRef]

Zhang, Q. Y.

S. F. Li, Q. Y. Zhang, and Y. P. Lee, "Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses," J. Appl. Phys. 96, 4746-4750 (2004).
[CrossRef]

Zhao, D.

G. S. Qin, W. P. Qin, C. F. Wu, S. H. Huang, D. Zhao, J. Zhang, and S. Z. Lu, "Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation," Opt. Commun. 242, 215-219 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Wetch, "Laser diode pumped 106mW blue upconversion fiber laser," Appl. Phys. Lett. 67, 1815-1817 (1995).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

F. Auzel, "Upconversion and anti-Stokes processes with f and d ions in solids," Chem. Rev. (Washington, D.C.) 104, 141-173 (2004).

Chin. Phys. (1)

X. B. Chen, F. C. Zhang, and L. Chen, "Up-conversion luminescence research of Er(0:5):ZBLAN material for volumetric display application when excited by 1520nm laser," Chin. Phys. 12, 1451-1458 (2003).
[CrossRef]

J. Appl. Phys. (2)

S. F. Li, Q. Y. Zhang, and Y. P. Lee, "Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses," J. Appl. Phys. 96, 4746-4750 (2004).
[CrossRef]

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, "Mechanism of the Yb-Er energy transfer in fluorozirconate glass," J. Appl. Phys. 93, 3873-3880 (2003).
[CrossRef]

J. Chem. Phys. (2)

P. V. dos Santos, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, and A. S. Gouveja-Neto, "Blue cooperative luminescence in Yb3+-doped tellurite glasses excited at 1.064μm," J. Chem. Phys. 116, 6772-6776 (2002).
[CrossRef]

W. T. Carnall, R. Fields, and K. T. Rajnank, "Electronic energy levels in the trivalent lanthanide aquo ions," J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

J. Lumin. (2)

X. B. Chen, "Research on the upconversion luminescence of Tm3+ ion in crystal and amorphous pentaphosphate materials," J. Lumin. 69, 151-160 (1996).
[CrossRef]

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, "Energy back transfer, migration and energy transfer (Yb-to-Er andEr-to-Yb) processes in Yb,Er:YAG," J. Lumin. 102, 694-698 (2003).
[CrossRef]

J. Non-Cryst. Solids (1)

A. Biswas, G. S. Maciel, C. S. Friend, and P. N. Prasad, "Upconversion properties of a transparent Er3+-Yb3+ co-doped LaF3-SiO2 glass-ceramics prepared by sol-gel method," J. Non-Cryst. Solids 316, 393-397 (2003).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

X. B. Chen and Z. F. Song, "An initial experimental comparative investigation of direct and indirect up-conversion sensitization of the G41 level of Tm, Yb co-doped material," Opt. Commun. 181, 171-181 (2000).
[CrossRef]

G. S. Qin, W. P. Qin, C. F. Wu, S. H. Huang, D. Zhao, J. Zhang, and S. Z. Lu, "Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation," Opt. Commun. 242, 215-219 (2004).
[CrossRef]

Opt. Mater. (1)

I. R. Martin, J. Mendez-Ramos, V. D. Rodriguez, J. J. Romero, and J. Garcia-Sole, "Increase of the 800nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions," Opt. Mater. 22, 327-333 (2003).
[CrossRef]

Phys. Rev. B (5)

M. P. Hehlen, A. Kuditcher, A. L. Lenef, H. Ni, Q. Shu, S. C. Rand, J. Rai, and S. Rai, "Nonradiative dynamics of avalanche upconversion in Tm:LiYF4," Phys. Rev. B 61, 1116-1128 (2000).
[CrossRef]

R. Balda, A. J. Garcia-Adeva, M. Voda, and J. Fernandez, "Upconversion processes in Er3+-doped KPb2Cl5," Phys. Rev. B 69, 205203 (2004).
[CrossRef]

J. F. Suyver, A. Aebischer, S. Garcia-Revilla, P. Gerner, and H. U. Gudel, "Anomalous power dependence of sensitized upconversion luminescence," Phys. Rev. B 71, 125123 (2005).
[CrossRef]

T. Miyakawa and D. L. Dexter, "Cooperative and stepwise excitation of luminescence: trivalent rare-earth ions in Yb3+-sensitized crystals," Phys. Rev. B 1, 70-80 (1970).
[CrossRef]

T. Miyakawa and D. L. Dexter, "Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids," Phys. Rev. B 1, 2961-2969 (1970).
[CrossRef]

Proc. SPIE (1)

X. B. Chen and Y. X. Nie, "Principle demonstration of 3D volumetric display achieved by PrYb co-doped material," Proc. SPIE 4221, 73-77 (2000).
[CrossRef]

Science (1)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, "A three-color, solid-state, three-dimensional display," Science 273, 1185-1187 (1996).
[CrossRef]

Other (2)

R. Reisfeld and C. K. Jørgensen, Lasers and Excited States of Rare Earths (Springer-Verlag, 1977).
[CrossRef]

Alexander Kaminskii, Laser Crystals: Their Physics (Springer, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the upconversion processes and energy-level structures of Tm 3 + and Yb 3 + ions.

Fig. 2
Fig. 2

Typical upconversion luminescence spectrum of Tm ( 0.1 ) Yb ( 3 ) : ZBLAN induced by a 975 nm diode laser at laser focus point f. The solid, dotted, and dashed curves are multiplied by factors of 1, 338, and 260 500 , respectively, in the display.

Fig. 3
Fig. 3

Variation of upconversion luminescence intensity F as a double-logarithmic function of the 975 nm pumping laser power P at the large laser spot position L for Tm ( 0.1 ) Yb ( 3 ) : ZBLAN glass. The slopes of the double-logarithmic log F log P curves (from top to bottom) are about [a] γ ( 793.5 nm ) = 1.8242 , [b] γ ( 473.9 nm ) = 2.7355 . [c] γ ( 362.0 nm ) = 4.3782 , and [d] γ ( 290.6 nm ) = 5.2269 .

Tables (2)

Tables Icon

Table 1 Relevant Results of the Slopes for All log F log P Plots of the Variation of Upconversion Luminescence Intensity F as a Function of the 975 nm Pumping Laser Power P at Both the Laser Focus Point f and the Large Laser Spot Position L

Tables Icon

Table 2 Proportion F b c of the Upconversion Luminescence Intensity between [b] Tm ( 0.5 ) Yb ( 3 ) : ZBLAN and [c] Tm ( 0.5 ) Yb ( 1 ) : ZBLAN at the Laser Focus Point f and the Large Laser Spot Position L

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ρ ( F 4 3 ) YbTm 1 f ρ [ F 5 2 2 ( Yb 3 + ) ] ρ [ H 6 3 ( Tm 3 + ) ] f P 1 ρ [ F 7 2 2 ( Yb 3 + ) ] ρ [ H 6 3 ( Tm 3 + ) ] f P 1 ρ 0 ( Yb 3 + ) ρ 0 ( Tm 3 + ) ,
ρ ( H 4 3 ) YbTm 2 f ρ [ F 5 2 2 ( Yb 3 + ) ] ρ [ F 4 3 ( Tm 3 + ) ] f ρ [ F 5 2 2 ( Yb 3 + ) ] 2 ρ [ H 6 3 ( Tm 3 + ) ] f P 2 ρ 0 ( Yb 3 + ) 2 ρ 0 ( Tm 3 + ) ,
ρ ( G 4 1 ) YbTm 3 f ρ [ F 5 2 2 ( Yb 3 + ) ] ρ [ H 4 3 ( Tm 3 + ) ] f ρ [ F 5 2 2 ( Yb 3 + ) ] 3 ρ [ H 6 3 ( Tm 3 + ) ] f P 3 ρ 0 ( Yb 3 + ) 3 ρ 0 ( Tm 3 + ) ,
ρ ( D 2 1 ) YbTm 4 f ρ [ F 5 2 2 ( Yb 3 + ) ] ρ [ G 4 1 ( Tm 3 + ) ] f P 4 ρ 0 ( Yb 3 + ) ρ 0 ( Tm 3 + ) .
TmTm 1 a : { H 4 3 ( Tm 3 + ) F 4 3 ( Tm 3 + ) , G 4 1 ( Tm 3 + ) D 2 1 ( Tm 3 + ) } ,
TmTm 1 b : { G 4 1 ( Tm 3 + ) F 4 3 ( Tm 3 + ) , H 4 3 ( Tm 3 + ) D 2 1 ( Tm 3 + ) } ,
TmTm 2 a : { G 4 1 ( Tm 3 + ) H 6 3 ( Tm 3 + ) , F 4 3 ( Tm 3 + ) D 2 1 ( Tm 3 + ) } ,
TmTm 2 b : { F 4 3 ( Tm 3 + ) H 6 3 ( Tm 3 + ) , G 4 1 ( Tm 3 + ) D 2 1 ( Tm 3 + ) } ,
ρ ( D 2 1 ) TmTm 1 f ρ [ G 4 1 ( Tm 3 + ) ] ρ [ H 4 3 ( Tm 3 + ) ] f ρ [ F 5 2 2 ( Yb 3 + ) ] 3 ρ [ H 6 3 ( Tm 3 + ) ] ρ [ F 5 2 2 ( Yb 3 + ) ] 2 ρ [ H 6 3 ( Tm 3 + ) ] f P 5 ρ 0 ( Yb 3 + ) 5 ρ 0 ( Tm 3 + ) 2 ,
ρ ( D 2 1 ) TmTm 2 f ρ [ G 4 1 ( Tm 3 + ) ] ρ [ F 4 3 ( Tm 3 + ) ] f ρ [ F 5 2 2 ( Yb 3 + ) ] 3 ρ [ H 6 3 ( Tm 3 + ) ] ρ [ F 5 2 2 ( Yb 3 + ) ] 1 ρ [ H 6 3 ( Tm 3 + ) ] f P 4 ρ 0 ( Yb 3 + ) 4 ρ 0 ( Tm 3 + ) 2 .
ρ ( I 6 1 ) YbTm 5 f ρ [ F 5 2 2 ( Yb 3 + ) ] ρ [ D 2 1 ( Tm 3 + ) ] f ρ [ F 5 2 2 ( Yb 3 + ) ] 6 ρ [ H 6 3 ( Tm 3 + ) ] 2 f P 6 ρ 0 ( Yb 3 + ) 6 ρ 0 ( Tm 3 + ) 2 .
F ( 793.5 nm ) b c = β b c ρ 0 ( Yb 3 + ) b c 2 ,
F ( 473.9 nm ) b c = β b c ρ 0 ( Yb 3 + ) b c 3 ,
F ( 362.0 nm ) b c = β b c ρ 0 ( Yb 3 + ) b c 5 .

Metrics