Abstract

We theoretically and numerically investigate indirect mid-infrared pulse shaping via parametric transfer, specifically difference-frequency generation. We define a quantitative measure for the fidelity of parametric transfer and investigate the effect of material dispersion and process nonlinearity on the parametric transfer. We show that a good fidelity transfer of a broad-bandwidth pulse can be efficiently achieved with a reasonable wavelength tunability, by careful design of the experimental configuration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Woutersen, U. Emmerichs, and H. J. Bakker, "Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component Structure," Science 278, 658-660 (1997).
    [CrossRef]
  2. R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, "Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma," Phys. Rev. Lett. 80, 3575-3578 (1998).
    [CrossRef]
  3. R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, "Ultrafast mid-infrared response of YBa2Cu3O7−δ," Science 287, 470-473 (2000).
    [CrossRef] [PubMed]
  4. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
    [CrossRef] [PubMed]
  5. R. N. Zare, "Laser control of chemical reactions," Science 279, 1875-1879 (1998).
    [CrossRef] [PubMed]
  6. V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-215 (1998).
    [CrossRef]
  7. L. Windhorn, T. Witte, J. S. Yston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
    [CrossRef]
  8. A. M. Weiner, D. E. Leaird, J. S. Patel, and I. J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
    [CrossRef]
  9. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors," Opt. Lett. 24, 493-495 (1999).
    [CrossRef]
  10. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, "Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping," Opt. Lett. 25, 575-577 (2000).
    [CrossRef]
  11. S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, "Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation," Opt. Lett. 31, 838-840 (2006).
    [CrossRef] [PubMed]
  12. F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, "Controlled shaping of ultrashort electric field transients in the mid-infrared spectral range," Opt. Lett. 25, 1472-1474 (2000).
    [CrossRef]
  13. N. Belabas, J. P. Likforman, L. Canioni, B. Bousquet, and M. Joffre, "Coherent broadband pulse shaping in the mid infrared," Opt. Lett. 26, 743-745 (2001).
    [CrossRef]
  14. H. S. Tan, W. Schreiber, and W. S. Warren, "High-resolution indirect pulse shaping by parametric transfer," Opt. Lett. 27, 439-441 (2002).
    [CrossRef]
  15. T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131-133 (2002).
    [CrossRef]
  16. T. Witte, K. L. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
    [CrossRef]
  17. W. S. Tan and W. S. Warren, "Mid infrared pulse shaping by optical parametric amplification and its application to optical free induction decay measurement," Opt. Express 11, 1021-1028 (2003).
    [CrossRef] [PubMed]
  18. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, "Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping," J. Opt. Soc. Am. B 17, 304-318 (2000).
    [CrossRef]
  19. G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, "Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings," J. Opt. Soc. Am. B 18, 534-539 (2001).
    [CrossRef]
  20. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, and M. A. Krumbügel, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
    [CrossRef]
  21. J. Prawiharjo, K. Gallo, N. G. R. Broderick, and D. J. Richardson, "Frequency-resolved optical gating in the 1.55μm band via cascaded χ(2) processes," J. Opt. Soc. Am. B 22, 1985-1993 (2005).
    [CrossRef]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  23. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence properties of the Nelder-Mead simplex method in low dimensions," SIAM J. Optim. 9, 112-147 (1998).
    [CrossRef]
  24. D. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
    [CrossRef]
  25. K. S. Abedin and H. Ito, "Temperature-dependent dispersion relation of ferroelectric lithium tantalate," J. Appl. Phys. 80, 6561-6563 (1996).
    [CrossRef]
  26. K. Kato, E. Takaoka, and N. Umemura, "Thermo-optic dispersion formula for RbTiOAsO4," Jpn. J. Appl. Phys., Part 1 42, 6420-6423 (2003).
    [CrossRef]
  27. A. M. Schober, M. Carbonneau-Lefort, and M. M. Fejer, "Broadband quasi-phase-matched second-harmonic generation of ultrashort optical pulses with spectral angular dispersion," J. Opt. Soc. Am. B 22, 1699-1713 (2005).
    [CrossRef]
  28. M. A. Watson, M. V. O'Connor, D. P. Shepherd, and D. C. Hanna, "Synchronously pumped CdSe optical parametric oscillator in the 9-10μm region," Opt. Lett. 28, 1957-1959 (2003).
    [CrossRef] [PubMed]
  29. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, "Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs," Opt. Lett. 31, 71-73 (2006).
    [CrossRef] [PubMed]
  30. H. S. S. Hung, N. A. Naz, J. Prawiharjo, D. P. Shepherd, and D. C. Hanna, "Parametric transfer in a synchronously pumped optical parametric oscillator," presented at CLEO/QELS 2006, Long Beach, California, May 21-25, 2006.
  31. http;//www.iss.soton.ac.uk/research/iridis.

2006 (2)

2005 (2)

2003 (4)

W. S. Tan and W. S. Warren, "Mid infrared pulse shaping by optical parametric amplification and its application to optical free induction decay measurement," Opt. Express 11, 1021-1028 (2003).
[CrossRef] [PubMed]

M. A. Watson, M. V. O'Connor, D. P. Shepherd, and D. C. Hanna, "Synchronously pumped CdSe optical parametric oscillator in the 9-10μm region," Opt. Lett. 28, 1957-1959 (2003).
[CrossRef] [PubMed]

T. Witte, K. L. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
[CrossRef]

K. Kato, E. Takaoka, and N. Umemura, "Thermo-optic dispersion formula for RbTiOAsO4," Jpn. J. Appl. Phys., Part 1 42, 6420-6423 (2003).
[CrossRef]

2002 (3)

2001 (2)

2000 (5)

1999 (1)

1998 (4)

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence properties of the Nelder-Mead simplex method in low dimensions," SIAM J. Optim. 9, 112-147 (1998).
[CrossRef]

R. N. Zare, "Laser control of chemical reactions," Science 279, 1875-1879 (1998).
[CrossRef] [PubMed]

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-215 (1998).
[CrossRef]

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, "Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma," Phys. Rev. Lett. 80, 3575-3578 (1998).
[CrossRef]

1997 (3)

S. Woutersen, U. Emmerichs, and H. J. Bakker, "Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component Structure," Science 278, 658-660 (1997).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, and M. A. Krumbügel, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

D. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
[CrossRef]

1996 (1)

K. S. Abedin and H. Ito, "Temperature-dependent dispersion relation of ferroelectric lithium tantalate," J. Appl. Phys. 80, 6561-6563 (1996).
[CrossRef]

1992 (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and I. J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Abedin, K. S.

K. S. Abedin and H. Ito, "Temperature-dependent dispersion relation of ferroelectric lithium tantalate," J. Appl. Phys. 80, 6561-6563 (1996).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Arbore, M. A.

Arrivo, S. M.

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-215 (1998).
[CrossRef]

Axt, V. M.

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, "Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma," Phys. Rev. Lett. 80, 3575-3578 (1998).
[CrossRef]

Backus, S.

Bakker, H. J.

S. Woutersen, U. Emmerichs, and H. J. Bakker, "Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component Structure," Science 278, 658-660 (1997).
[CrossRef]

Belabas, N.

Bliss, D.

Bousquet, B.

Broderick, N. G. R.

Canioni, L.

Carbonneau-Lefort, M.

Cheng, Z.

de Vivie-Riedle, R.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
[CrossRef] [PubMed]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, and M. A. Krumbügel, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Eickemeyer, F.

Elsaesser, T.

F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, "Controlled shaping of ultrashort electric field transients in the mid-infrared spectral range," Opt. Lett. 25, 1472-1474 (2000).
[CrossRef]

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, "Ultrafast mid-infrared response of YBa2Cu3O7−δ," Science 287, 470-473 (2000).
[CrossRef] [PubMed]

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, "Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma," Phys. Rev. Lett. 80, 3575-3578 (1998).
[CrossRef]

Emmerichs, U.

S. Woutersen, U. Emmerichs, and H. J. Bakker, "Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component Structure," Science 278, 658-660 (1997).
[CrossRef]

Farnan, G. A.

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, "Ultrafast mid-infrared response of YBa2Cu3O7−δ," Science 287, 470-473 (2000).
[CrossRef] [PubMed]

Fejer, M. M.

Fermann, M.

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, and M. A. Krumbügel, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Fulmer, E. C.

Fuß, W.

L. Windhorn, T. Witte, J. S. Yston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

Gallo, K.

Galvanauskas, A.

Hanna, D. C.

M. A. Watson, M. V. O'Connor, D. P. Shepherd, and D. C. Hanna, "Synchronously pumped CdSe optical parametric oscillator in the 9-10μm region," Opt. Lett. 28, 1957-1959 (2003).
[CrossRef] [PubMed]

H. S. S. Hung, N. A. Naz, J. Prawiharjo, D. P. Shepherd, and D. C. Hanna, "Parametric transfer in a synchronously pumped optical parametric oscillator," presented at CLEO/QELS 2006, Long Beach, California, May 21-25, 2006.

Harris, J. S.

Harter, D.

Hase, A.

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, "Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma," Phys. Rev. Lett. 80, 3575-3578 (1998).
[CrossRef]

Heilweil, E. J.

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-215 (1998).
[CrossRef]

Hung, H. S. S.

H. S. S. Hung, N. A. Naz, J. Prawiharjo, D. P. Shepherd, and D. C. Hanna, "Parametric transfer in a synchronously pumped optical parametric oscillator," presented at CLEO/QELS 2006, Long Beach, California, May 21-25, 2006.

Imeshev, G.

Ito, H.

K. S. Abedin and H. Ito, "Temperature-dependent dispersion relation of ferroelectric lithium tantalate," J. Appl. Phys. 80, 6561-6563 (1996).
[CrossRef]

Joffre, M.

Jundt, D.

Kaindl, R. A.

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, "Ultrafast mid-infrared response of YBa2Cu3O7−δ," Science 287, 470-473 (2000).
[CrossRef] [PubMed]

F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, "Controlled shaping of ultrashort electric field transients in the mid-infrared spectral range," Opt. Lett. 25, 1472-1474 (2000).
[CrossRef]

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, "Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma," Phys. Rev. Lett. 80, 3575-3578 (1998).
[CrossRef]

Kapteyn, H.

Kato, K.

K. Kato, E. Takaoka, and N. Umemura, "Thermo-optic dispersion formula for RbTiOAsO4," Jpn. J. Appl. Phys., Part 1 42, 6420-6423 (2003).
[CrossRef]

Kleiman, V. D.

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-215 (1998).
[CrossRef]

Kompa, K.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Kompa, K. L.

T. Witte, K. L. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
[CrossRef]

L. Windhorn, T. Witte, J. S. Yston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131-133 (2002).
[CrossRef]

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, and M. A. Krumbügel, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Kuhn, T.

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, "Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma," Phys. Rev. Lett. 80, 3575-3578 (1998).
[CrossRef]

Künzel, H.

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, "Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma," Phys. Rev. Lett. 80, 3575-3578 (1998).
[CrossRef]

Kuo, P. S.

Lagarias, J. C.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence properties of the Nelder-Mead simplex method in low dimensions," SIAM J. Optim. 9, 112-147 (1998).
[CrossRef]

Laude, V.

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and I. J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Likforman, J. P.

Lutgen, S.

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, "Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma," Phys. Rev. Lett. 80, 3575-3578 (1998).
[CrossRef]

Maginnis, K.

McCurry, M. P.

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, "Ultrafast mid-infrared response of YBa2Cu3O7−δ," Science 287, 470-473 (2000).
[CrossRef] [PubMed]

Melinger, J. S.

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-215 (1998).
[CrossRef]

Motzkus, M.

T. Witte, K. L. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
[CrossRef]

L. Windhorn, T. Witte, J. S. Yston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131-133 (2002).
[CrossRef]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Mourou, G.

Murnane, M.

Naz, N. A.

H. S. S. Hung, N. A. Naz, J. Prawiharjo, D. P. Shepherd, and D. C. Hanna, "Parametric transfer in a synchronously pumped optical parametric oscillator," presented at CLEO/QELS 2006, Long Beach, California, May 21-25, 2006.

Nottelmann, B.

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, "Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma," Phys. Rev. Lett. 80, 3575-3578 (1998).
[CrossRef]

O'Connor, M. V.

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and I. J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Prawiharjo, J.

J. Prawiharjo, K. Gallo, N. G. R. Broderick, and D. J. Richardson, "Frequency-resolved optical gating in the 1.55μm band via cascaded χ(2) processes," J. Opt. Soc. Am. B 22, 1985-1993 (2005).
[CrossRef]

H. S. S. Hung, N. A. Naz, J. Prawiharjo, D. P. Shepherd, and D. C. Hanna, "Parametric transfer in a synchronously pumped optical parametric oscillator," presented at CLEO/QELS 2006, Long Beach, California, May 21-25, 2006.

Proch, D.

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131-133 (2002).
[CrossRef]

L. Windhorn, T. Witte, J. S. Yston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

Rabitz, H.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Reeds, J. A.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence properties of the Nelder-Mead simplex method in low dimensions," SIAM J. Optim. 9, 112-147 (1998).
[CrossRef]

Richardson, D. J.

Russek, U.

Ryan, J. F.

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, "Ultrafast mid-infrared response of YBa2Cu3O7−δ," Science 287, 470-473 (2000).
[CrossRef] [PubMed]

Schober, A. M.

Schreiber, W.

Shepherd, D. P.

M. A. Watson, M. V. O'Connor, D. P. Shepherd, and D. C. Hanna, "Synchronously pumped CdSe optical parametric oscillator in the 9-10μm region," Opt. Lett. 28, 1957-1959 (2003).
[CrossRef] [PubMed]

H. S. S. Hung, N. A. Naz, J. Prawiharjo, D. P. Shepherd, and D. C. Hanna, "Parametric transfer in a synchronously pumped optical parametric oscillator," presented at CLEO/QELS 2006, Long Beach, California, May 21-25, 2006.

Shim, S. H.

Simanovskii, D. M.

Smith, D. C.

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, "Ultrafast mid-infrared response of YBa2Cu3O7−δ," Science 287, 470-473 (2000).
[CrossRef] [PubMed]

Spielmann, C.

Strasfeld, D. B.

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, and M. A. Krumbügel, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Takaoka, E.

K. Kato, E. Takaoka, and N. Umemura, "Thermo-optic dispersion formula for RbTiOAsO4," Jpn. J. Appl. Phys., Part 1 42, 6420-6423 (2003).
[CrossRef]

Tan, H. S.

Tan, W. S.

Tournois, P.

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, and M. A. Krumbügel, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Umemura, N.

K. Kato, E. Takaoka, and N. Umemura, "Thermo-optic dispersion formula for RbTiOAsO4," Jpn. J. Appl. Phys., Part 1 42, 6420-6423 (2003).
[CrossRef]

Vdovin, G.

Verluise, F.

Vodopyanov, K. L.

Walmsley, D. G.

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, "Ultrafast mid-infrared response of YBa2Cu3O7−δ," Science 287, 470-473 (2000).
[CrossRef] [PubMed]

Warren, W. S.

Watson, M. A.

Weiner, A. M.

F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, "Controlled shaping of ultrashort electric field transients in the mid-infrared spectral range," Opt. Lett. 25, 1472-1474 (2000).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and I. J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Weyburne, D.

Windhorn, L.

L. Windhorn, T. Witte, J. S. Yston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

Witte, T.

T. Witte, K. L. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
[CrossRef]

L. Windhorn, T. Witte, J. S. Yston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131-133 (2002).
[CrossRef]

Woerner, M.

F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, "Controlled shaping of ultrashort electric field transients in the mid-infrared spectral range," Opt. Lett. 25, 1472-1474 (2000).
[CrossRef]

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, "Ultrafast mid-infrared response of YBa2Cu3O7−δ," Science 287, 470-473 (2000).
[CrossRef] [PubMed]

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, "Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma," Phys. Rev. Lett. 80, 3575-3578 (1998).
[CrossRef]

Woutersen, S.

S. Woutersen, U. Emmerichs, and H. J. Bakker, "Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component Structure," Science 278, 658-660 (1997).
[CrossRef]

Wright, M. H.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence properties of the Nelder-Mead simplex method in low dimensions," SIAM J. Optim. 9, 112-147 (1998).
[CrossRef]

Wright, P. E.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence properties of the Nelder-Mead simplex method in low dimensions," SIAM J. Optim. 9, 112-147 (1998).
[CrossRef]

Wullert, I. J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and I. J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

Yston, J. S.

L. Windhorn, T. Witte, J. S. Yston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

Yu, X.

Zanni, M. T.

Zare, R. N.

R. N. Zare, "Laser control of chemical reactions," Science 279, 1875-1879 (1998).
[CrossRef] [PubMed]

Zeek, E.

Zeidler, D.

Appl. Phys. B (1)

T. Witte, K. L. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
[CrossRef]

Chem. Phys. (1)

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-215 (1998).
[CrossRef]

Chem. Phys. Lett. (1)

L. Windhorn, T. Witte, J. S. Yston, D. Proch, M. Motzkus, K. L. Kompa, and W. Fuß, "Molecular dissociation by mid-IR femtosecond pulses," Chem. Phys. Lett. 357, 85-90 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and I. J. R. Wullert, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

J. Appl. Phys. (1)

K. S. Abedin and H. Ito, "Temperature-dependent dispersion relation of ferroelectric lithium tantalate," J. Appl. Phys. 80, 6561-6563 (1996).
[CrossRef]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys., Part 1 (1)

K. Kato, E. Takaoka, and N. Umemura, "Thermo-optic dispersion formula for RbTiOAsO4," Jpn. J. Appl. Phys., Part 1 42, 6420-6423 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (10)

M. A. Watson, M. V. O'Connor, D. P. Shepherd, and D. C. Hanna, "Synchronously pumped CdSe optical parametric oscillator in the 9-10μm region," Opt. Lett. 28, 1957-1959 (2003).
[CrossRef] [PubMed]

N. Belabas, J. P. Likforman, L. Canioni, B. Bousquet, and M. Joffre, "Coherent broadband pulse shaping in the mid infrared," Opt. Lett. 26, 743-745 (2001).
[CrossRef]

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131-133 (2002).
[CrossRef]

H. S. Tan, W. Schreiber, and W. S. Warren, "High-resolution indirect pulse shaping by parametric transfer," Opt. Lett. 27, 439-441 (2002).
[CrossRef]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, "Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs," Opt. Lett. 31, 71-73 (2006).
[CrossRef] [PubMed]

S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, "Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation," Opt. Lett. 31, 838-840 (2006).
[CrossRef] [PubMed]

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, "Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping," Opt. Lett. 25, 575-577 (2000).
[CrossRef]

D. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
[CrossRef]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors," Opt. Lett. 24, 493-495 (1999).
[CrossRef]

F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, "Controlled shaping of ultrashort electric field transients in the mid-infrared spectral range," Opt. Lett. 25, 1472-1474 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, "Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma," Phys. Rev. Lett. 80, 3575-3578 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, and M. A. Krumbügel, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Science (4)

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, "Ultrafast mid-infrared response of YBa2Cu3O7−δ," Science 287, 470-473 (2000).
[CrossRef] [PubMed]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Whither the future of controlling quantum phenomena?," Science 288, 824-828 (2000).
[CrossRef] [PubMed]

R. N. Zare, "Laser control of chemical reactions," Science 279, 1875-1879 (1998).
[CrossRef] [PubMed]

S. Woutersen, U. Emmerichs, and H. J. Bakker, "Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component Structure," Science 278, 658-660 (1997).
[CrossRef]

SIAM J. Optim. (1)

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence properties of the Nelder-Mead simplex method in low dimensions," SIAM J. Optim. 9, 112-147 (1998).
[CrossRef]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

H. S. S. Hung, N. A. Naz, J. Prawiharjo, D. P. Shepherd, and D. C. Hanna, "Parametric transfer in a synchronously pumped optical parametric oscillator," presented at CLEO/QELS 2006, Long Beach, California, May 21-25, 2006.

http;//www.iss.soton.ac.uk/research/iridis.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

illustration of indirect pulse shaping via parametric transfer by DFG.

Fig. 2
Fig. 2

(a) Temporal intensity and instantaneous frequency, and (b) spectral intensity and group delay of the input pump pulse.

Fig. 3
Fig. 3

(a) Spectral intensities of the generated idler pulses from the interaction between pump pulses as described in the text and transform-limited Gaussian signal pulses of temporal FWHM shown by the numbers in picoseconds. (b) Transfer fidelity Z in logarithmic scale as a function of the signal pulse width.

Fig. 4
Fig. 4

Generated idler spectra as a function of δ ν p i L at δ ν p s = 0 and τ = 0 .

Fig. 5
Fig. 5

Contour plot of transfer fidelity Z as a function of δ ν p i L and τ with δ ν p s = 0 .

Fig. 6
Fig. 6

Generated idler spectra at δ ν p i = 0 and τ = 0 for δ ν p s L = 0 , 0.5 , 1 ps , as indicated by the numbers.

Fig. 7
Fig. 7

Contour plot of transfer fidelity Z as a function of δ ν p s L and τ with δ ν p i = 0 . The inset shows Z along τ = δ ν p s L 2 as indicated by the dashed line. Note that this line is not part of the contour plot, i.e., it does not show a constant value of Z.

Fig. 8
Fig. 8

Contour plot of transfer fidelity Z as a function of input pump and signal peak powers with δ ν p s = δ ν p i = 0 , and τ = 0 .

Fig. 9
Fig. 9

(a) Transfer fidelity Z and pump depletion as a function of signal peak intensity, with input pump peak intensity being kept constant at 10 kW cm 2 . (b) Transfer fidelity Z and signal amplification as a function of pump peak intensity, with input signal peak intensity being kept constant at 10 kW cm 2 .

Fig. 10
Fig. 10

Contour plot of transfer fidelity Z as a function of relative delay τ between input pulses, and peak intensities of (a) pump pulses, and (b) signal pulses. Temporal delay, which minimizes Z for every power level, is shown by the dots.

Fig. 11
Fig. 11

Contour plot of transfer fidelity Z as a function of β p L and δ β p i L .

Fig. 12
Fig. 12

Group velocity (solid curve) and GVD (dashed curve) of lithium niobate at a temperature of T = 120 ° C as calculated from the Sellmeier equation.[24]

Fig. 13
Fig. 13

Parametric transfer fidelity Z (top) and temporal walk-off δ ν p i L (bottom) as a function of the idler carrier wavelength λ i using different pump carrier wavelength λ p , as indicated by the numbers, in a 1 cm long PPLN. The peak intensities for both input pump and signal pulses were 5 MW cm 2 . Parametric transfer fidelities for different cases are shown: with GVD (solid curves), with GVD and postcompensation (dashed curves), and without GVD (dotted curves).

Fig. 14
Fig. 14

Parametric transfer fidelity Z (bottom) as a function of the idler carrier wavelength λ i using a pump carrier wavelength λ p = 1.05 μ m in three different lengths of PPLN ( L = 10 , 5 , 2.5 mm ) . The peak intensities for both input pump and signal pulses were I p ( 0 ) = I s ( 0 ) = 5 , 10 , 20 MW cm 2 , respectively. Parametric transfer fidelities for different cases are shown: with GVD (solid curves), with GVD and postcompensation (dashed curves), and without GVD (dotted curves).

Fig. 15
Fig. 15

Idler carrier wavelength λ i , which has the same group velocity as the pump carrier wavelength, as calculated from the Sellmeier equation for LiNbO 3 (Ref. [24]), LiTaO 3 (Ref. [25]), and RbTiOAsO 4 (Ref. [26]). The required periods to quasi-phase match the interaction are also shown in the figure.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

E j ( z , t ) = A j ( z , t ) exp [ i k ( ω j ) z i ω j t ] ,
A j ( z , t ) = Ψ j ( z , t ) exp [ i ϕ j ( z , t ) ] ,
E ̂ j ( z , Ω j ) = F [ E ( z , t ) ] = A ̂ j ( z , Ω j ) exp [ i k ( ω j + Ω j ) z ] ,
A i ( L , t ) = i γ i A p ( 0 , t ) A s * ( 0 , t τ ) ,
A ̂ i ( L , Ω i ) = i γ i A ̂ p A ̂ s * = i γ i A ̂ p ( 0 , Ω s + Ω i ) A ̂ s * ( 0 , Ω s ) exp ( i τ Ω s ) d Ω s .
Z = 1 S p ( Ω , τ ; z = 0 ) S i ( Ω , τ ; z = L ) d Ω d τ [ S p 2 ( Ω , τ ; z = 0 ) d Ω d τ S i 2 ( Ω , τ ; z = L ) d Ω d τ ] 1 2 ,
S j ( Ω , τ ; z ) = A j ( z , t ) A j ( z , t τ ) 2 exp ( i Ω t ) d t 2 .
A p ( t ) = A p ( 0 ) f ( t ) exp ( i 10 f ( t ) 2 ) ,
f ( t ) = exp [ 2 ln 2 ( t δ t p ) 2 ] ,
A ̂ i ( z , Ω i ) z = i γ i A ̂ p ( Ω s + Ω i ) A ̂ s * ( Ω s ) exp ( i τ Ω s ) exp [ i Δ k ( Ω s , Ω i ) z ] d Ω s ,
Δ k ( Ω s , Ω i ) = k ( ω p + Ω s + Ω i ) k ( ω s + Ω s ) k ( ω i + Ω i )
Δ k ( Ω s , Ω i ) = Δ k 0 + δ ν p s Ω s + δ ν p i Ω i + 1 2 δ β p s Ω s 2 + 1 2 δ β p i Ω i 2 + β p Ω s Ω i + O ( Ω s 3 , Ω i 3 ) ,
A ̂ i ( z , Ω i ) z = i γ i A ̂ p ( Ω s + Ω i ) A ̂ s * ( Ω s ) exp ( i τ Ω s ) exp [ i ( δ ν p s Ω s + δ ν p i Ω i ) z ] d Ω s .
A ̂ i ( z , Ω i ) z = i γ i A ̂ p ( Ω s + Ω i ) A ̂ s * ( Ω s ) exp ( i τ Ω s ) exp [ i δ ν p i Ω i z ] d Ω s ,
A ̂ i ( L , Ω i ) = D ( L , Ω i ) [ A ̂ p A ̂ s * ] ,
D ( L , Ω i ) = i γ i 0 L exp [ i δ ν p i Ω i z ] d z = i γ i sinc [ δ ν p i Ω i L 2 ] exp [ i δ ν p i Ω i L 2 ] .
A ̂ i ( z , Ω i ) z = i γ i A ̂ p ( Ω s + Ω i ) A ̂ s * ( Ω s ) exp ( i τ Ω s ) exp [ i δ ν p s Ω s z ] d Ω s .
A ̂ i ( L , Ω i ) = A ̂ p A ̂ e ,
A ̂ e ( Ω s ) = i γ i A ̂ s * ( Ω s ) exp ( i τ Ω s ) 0 L exp [ i δ ν p s Ω s z ] d z = i γ i sinc [ δ ν p s Ω s L 2 ] A ̂ s * ( Ω s ) exp [ i ( τ + δ ν p s L 2 ) Ω s ] .
A p z + 1 u p A p t + i β p 2 2 A p t 2 = i γ p A s A i exp ( i Δ k 0 z ) ,
A s z + 1 u s A s t + i β s 2 2 A s t 2 = i γ s A p A i * exp ( i Δ k 0 z ) ,
A i z + 1 u i A i t + i β i 2 2 A i t 2 = i γ i A p A s * exp ( i Δ k 0 z ) ,
A i ( z , t ) = i A p ( 0 , t ) γ i γ p sin [ γ i γ p A s ( 0 , t ) z ] exp [ i ϕ s ( 0 , t ) ] .
A ( z , t ) = i sinh [ γ i γ s A p ( 0 , t ) z ] exp [ i ϕ p ( 0 , t ) ] γ i γ s A s * ( 0 , t ) .

Metrics