Abstract

We present numerical studies of recombination gain in the transition to the ground state of H-like C (21 transition at λ=3.4nm). It is shown that high gain (up to about 180cm1) can be achieved using currently available, relatively compact, laser technology. The model includes the ionization of the plasma by an ultraintense, ultrashort laser pulse, followed by plasma expansion, cooling, and recombination. Transient population inversion is generated during the recombination process. We investigate the behavior of the gain with respect to different plasma parameters and pump pulse parameters and explain how the different properties of the plasma and the pump pulse affect the gain.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Peyraud and N. Peyraud, "Population inversion in laser plasmas," J. Appl. Phys. 43, 2993-2996 (1972).
    [CrossRef]
  2. W. Jones and A. Ali, "Theory of short-wavelength lasers from recombining plasmas," Appl. Phys. Lett. 26, 450-451 (1975).
    [CrossRef]
  3. Y. Nagata, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, and K. Toyoda, "Soft-x-ray amplification of the lyman-alpha transition by optical-field-induced ionization," Phys. Rev. Lett. 71, 3774-3777 (1993).
    [CrossRef] [PubMed]
  4. K. M. Krushelnick, W. Tighe, and S. Suckewer, "X-ray laser studies of recombining lithium plasmas created by optical field ionization," J. Opt. Soc. Am. B 13, 306-311 (1996).
    [CrossRef]
  5. D. V. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov, "Demonstration of soft x-ray lasing to ground state in Li III," Phys. Rev. Lett. 77, 5206-5209 (1996).
    [CrossRef] [PubMed]
  6. A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
    [CrossRef]
  7. N. H. Burnett and P. B. Corkum, "Cold-plasma production for recombination extreme-ultraviolet lasers by optical-field-induced ionization," J. Opt. Soc. Am. B 6, 1195-1199 (1989).
    [CrossRef]
  8. K. A. Janulewicz, S. B. Healy, and G. J. Pert, "Hydrodynamics perspective on OFI-plasma x-ray lasers," Inst. Phys. Conf. Ser. 29, 156-160 (1996).
  9. K. A. Janulewicz, S. B. Healy, and G. J. Pert, "Modelling of OFI-plasma recombination X-ray lasers," Opt. Commun. 140, 165-178 (1997).
    [CrossRef]
  10. G. J. Pert, "X-ray lasers pumped by ultra-short light pulses," J. Phys. IV 11, 181-187 (2001).
    [CrossRef]
  11. Y. Avitzour, S. Suckewer, and E. Valeo, "Numerical investigation of recombination gain in the Li III transition to ground state," Phys. Rev. E 69, 046409 (2004).
    [CrossRef]
  12. Y. Avitzour and S. Suckewer, "Numerical simulation of the effect of hydrogen on recombination gain in the transition to ground state of Li III," J. Opt. Soc. Am. B 23, 925-931 (2006).
    [CrossRef]
  13. B. Smirnov and M. Chibisov, "Breaking up of atomic particles by an electric field and by electron collisions," Sov. Phys. JETP 22, 585-592 (1966).
  14. A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, "Ionization of atoms in an alternating electric field," Sov. Phys. JETP 23, 924-934 (1966).
  15. P. Corkum, N. Burnett, and F. Brunel, "Above-threshold ionization in the long-wavelength limit," Phys. Rev. Lett. 62, 1259-1262 (1989).
    [CrossRef] [PubMed]
  16. T. Ditmire, "Simulations of heating and electron energy distributions in optical field ionized plasmas," Phys. Rev. E 54, 6735-6740 (1996).
    [CrossRef]
  17. Y. Ping, W. Cheng, S. Suckewer, D. Clark, and N. Fisch, "Amplification of ultrashort laser pulses by a resonant raman scheme in a gas-jet plasma," Phys. Rev. Lett. 92, 175007 (2004).
    [CrossRef] [PubMed]
  18. W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. Fisch, M. Hur, and J. Wurtele, "Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses," Phys. Rev. Lett. 94, 045003 (2005).
    [CrossRef] [PubMed]
  19. C. Birdsall and A. Langdon, Plasma Physics via Computer Simulation (IOP, 2000).
  20. E. M. Epperlein, "Fokker-Planck modeling of electron-transport in laser-produced plasmas," Laser Part. Beams 12, 257-272 (1994).
    [CrossRef]
  21. S. Brunner and E. Valeo, "Simulations of electron transport in laser hot spots," Phys. Plasmas 9, 923-936 (2002).
    [CrossRef]
  22. H. Griem, Spectral Line Broadening by Plasmas (Academic, 1974).
  23. R. Elton, "Quasi-stationary population inversion on k-alpha-transitions," Appl. Opt. 14, 2243-2249 (1975).
    [CrossRef] [PubMed]
  24. H. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).
  25. W. Lotz, "Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions from hydrogen to calcium," Z. Phys. 216, 241-247 (1968).
    [CrossRef]
  26. V. Fisher, Y. Ralchenko, V. Bernshtam, A. Goldgirsh, Y. Maron, L. Vainshtein, and I. Bray, "Electron-impact-excitation cross sections of lithiumlike ions," Phys. Rev. A 56, 3726-3733 (1997).
    [CrossRef]
  27. G. Pert, "Recombination and population inversion in plasmas generated by tunneling ionization," Phys. Rev. E 73, 066401 (2006).
    [CrossRef]

2006 (2)

2005 (1)

W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. Fisch, M. Hur, and J. Wurtele, "Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses," Phys. Rev. Lett. 94, 045003 (2005).
[CrossRef] [PubMed]

2004 (2)

Y. Avitzour, S. Suckewer, and E. Valeo, "Numerical investigation of recombination gain in the Li III transition to ground state," Phys. Rev. E 69, 046409 (2004).
[CrossRef]

Y. Ping, W. Cheng, S. Suckewer, D. Clark, and N. Fisch, "Amplification of ultrashort laser pulses by a resonant raman scheme in a gas-jet plasma," Phys. Rev. Lett. 92, 175007 (2004).
[CrossRef] [PubMed]

2002 (1)

S. Brunner and E. Valeo, "Simulations of electron transport in laser hot spots," Phys. Plasmas 9, 923-936 (2002).
[CrossRef]

2001 (1)

G. J. Pert, "X-ray lasers pumped by ultra-short light pulses," J. Phys. IV 11, 181-187 (2001).
[CrossRef]

1999 (1)

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
[CrossRef]

1997 (2)

K. A. Janulewicz, S. B. Healy, and G. J. Pert, "Modelling of OFI-plasma recombination X-ray lasers," Opt. Commun. 140, 165-178 (1997).
[CrossRef]

V. Fisher, Y. Ralchenko, V. Bernshtam, A. Goldgirsh, Y. Maron, L. Vainshtein, and I. Bray, "Electron-impact-excitation cross sections of lithiumlike ions," Phys. Rev. A 56, 3726-3733 (1997).
[CrossRef]

1996 (4)

K. M. Krushelnick, W. Tighe, and S. Suckewer, "X-ray laser studies of recombining lithium plasmas created by optical field ionization," J. Opt. Soc. Am. B 13, 306-311 (1996).
[CrossRef]

K. A. Janulewicz, S. B. Healy, and G. J. Pert, "Hydrodynamics perspective on OFI-plasma x-ray lasers," Inst. Phys. Conf. Ser. 29, 156-160 (1996).

D. V. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov, "Demonstration of soft x-ray lasing to ground state in Li III," Phys. Rev. Lett. 77, 5206-5209 (1996).
[CrossRef] [PubMed]

T. Ditmire, "Simulations of heating and electron energy distributions in optical field ionized plasmas," Phys. Rev. E 54, 6735-6740 (1996).
[CrossRef]

1994 (1)

E. M. Epperlein, "Fokker-Planck modeling of electron-transport in laser-produced plasmas," Laser Part. Beams 12, 257-272 (1994).
[CrossRef]

1993 (1)

Y. Nagata, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, and K. Toyoda, "Soft-x-ray amplification of the lyman-alpha transition by optical-field-induced ionization," Phys. Rev. Lett. 71, 3774-3777 (1993).
[CrossRef] [PubMed]

1989 (2)

1975 (2)

R. Elton, "Quasi-stationary population inversion on k-alpha-transitions," Appl. Opt. 14, 2243-2249 (1975).
[CrossRef] [PubMed]

W. Jones and A. Ali, "Theory of short-wavelength lasers from recombining plasmas," Appl. Phys. Lett. 26, 450-451 (1975).
[CrossRef]

1972 (1)

J. Peyraud and N. Peyraud, "Population inversion in laser plasmas," J. Appl. Phys. 43, 2993-2996 (1972).
[CrossRef]

1968 (1)

W. Lotz, "Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions from hydrogen to calcium," Z. Phys. 216, 241-247 (1968).
[CrossRef]

1966 (2)

B. Smirnov and M. Chibisov, "Breaking up of atomic particles by an electric field and by electron collisions," Sov. Phys. JETP 22, 585-592 (1966).

A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, "Ionization of atoms in an alternating electric field," Sov. Phys. JETP 23, 924-934 (1966).

Ali, A.

W. Jones and A. Ali, "Theory of short-wavelength lasers from recombining plasmas," Appl. Phys. Lett. 26, 450-451 (1975).
[CrossRef]

Avitzour, Y.

Y. Avitzour and S. Suckewer, "Numerical simulation of the effect of hydrogen on recombination gain in the transition to ground state of Li III," J. Opt. Soc. Am. B 23, 925-931 (2006).
[CrossRef]

W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. Fisch, M. Hur, and J. Wurtele, "Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses," Phys. Rev. Lett. 94, 045003 (2005).
[CrossRef] [PubMed]

Y. Avitzour, S. Suckewer, and E. Valeo, "Numerical investigation of recombination gain in the Li III transition to ground state," Phys. Rev. E 69, 046409 (2004).
[CrossRef]

Bernshtam, V.

V. Fisher, Y. Ralchenko, V. Bernshtam, A. Goldgirsh, Y. Maron, L. Vainshtein, and I. Bray, "Electron-impact-excitation cross sections of lithiumlike ions," Phys. Rev. A 56, 3726-3733 (1997).
[CrossRef]

Birdsall, C.

C. Birdsall and A. Langdon, Plasma Physics via Computer Simulation (IOP, 2000).

Bray, I.

V. Fisher, Y. Ralchenko, V. Bernshtam, A. Goldgirsh, Y. Maron, L. Vainshtein, and I. Bray, "Electron-impact-excitation cross sections of lithiumlike ions," Phys. Rev. A 56, 3726-3733 (1997).
[CrossRef]

Brunel, F.

P. Corkum, N. Burnett, and F. Brunel, "Above-threshold ionization in the long-wavelength limit," Phys. Rev. Lett. 62, 1259-1262 (1989).
[CrossRef] [PubMed]

Brunner, S.

S. Brunner and E. Valeo, "Simulations of electron transport in laser hot spots," Phys. Plasmas 9, 923-936 (2002).
[CrossRef]

Burnett, N.

P. Corkum, N. Burnett, and F. Brunel, "Above-threshold ionization in the long-wavelength limit," Phys. Rev. Lett. 62, 1259-1262 (1989).
[CrossRef] [PubMed]

Burnett, N. H.

Cheng, W.

W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. Fisch, M. Hur, and J. Wurtele, "Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses," Phys. Rev. Lett. 94, 045003 (2005).
[CrossRef] [PubMed]

Y. Ping, W. Cheng, S. Suckewer, D. Clark, and N. Fisch, "Amplification of ultrashort laser pulses by a resonant raman scheme in a gas-jet plasma," Phys. Rev. Lett. 92, 175007 (2004).
[CrossRef] [PubMed]

Chibisov, M.

B. Smirnov and M. Chibisov, "Breaking up of atomic particles by an electric field and by electron collisions," Sov. Phys. JETP 22, 585-592 (1966).

Clark, D.

Y. Ping, W. Cheng, S. Suckewer, D. Clark, and N. Fisch, "Amplification of ultrashort laser pulses by a resonant raman scheme in a gas-jet plasma," Phys. Rev. Lett. 92, 175007 (2004).
[CrossRef] [PubMed]

Corkum, P.

P. Corkum, N. Burnett, and F. Brunel, "Above-threshold ionization in the long-wavelength limit," Phys. Rev. Lett. 62, 1259-1262 (1989).
[CrossRef] [PubMed]

Corkum, P. B.

Ditmire, T.

T. Ditmire, "Simulations of heating and electron energy distributions in optical field ionized plasmas," Phys. Rev. E 54, 6735-6740 (1996).
[CrossRef]

Elton, R.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
[CrossRef]

R. Elton, "Quasi-stationary population inversion on k-alpha-transitions," Appl. Opt. 14, 2243-2249 (1975).
[CrossRef] [PubMed]

Epperlein, E. M.

E. M. Epperlein, "Fokker-Planck modeling of electron-transport in laser-produced plasmas," Laser Part. Beams 12, 257-272 (1994).
[CrossRef]

Feldman, U.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
[CrossRef]

Fisch, N.

W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. Fisch, M. Hur, and J. Wurtele, "Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses," Phys. Rev. Lett. 94, 045003 (2005).
[CrossRef] [PubMed]

Y. Ping, W. Cheng, S. Suckewer, D. Clark, and N. Fisch, "Amplification of ultrashort laser pulses by a resonant raman scheme in a gas-jet plasma," Phys. Rev. Lett. 92, 175007 (2004).
[CrossRef] [PubMed]

Fisher, V.

V. Fisher, Y. Ralchenko, V. Bernshtam, A. Goldgirsh, Y. Maron, L. Vainshtein, and I. Bray, "Electron-impact-excitation cross sections of lithiumlike ions," Phys. Rev. A 56, 3726-3733 (1997).
[CrossRef]

Goldgirsh, A.

V. Fisher, Y. Ralchenko, V. Bernshtam, A. Goldgirsh, Y. Maron, L. Vainshtein, and I. Bray, "Electron-impact-excitation cross sections of lithiumlike ions," Phys. Rev. A 56, 3726-3733 (1997).
[CrossRef]

Goltsov, A.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
[CrossRef]

D. V. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov, "Demonstration of soft x-ray lasing to ground state in Li III," Phys. Rev. Lett. 77, 5206-5209 (1996).
[CrossRef] [PubMed]

Griem, H.

H. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

H. Griem, Spectral Line Broadening by Plasmas (Academic, 1974).

Healy, S. B.

K. A. Janulewicz, S. B. Healy, and G. J. Pert, "Modelling of OFI-plasma recombination X-ray lasers," Opt. Commun. 140, 165-178 (1997).
[CrossRef]

K. A. Janulewicz, S. B. Healy, and G. J. Pert, "Hydrodynamics perspective on OFI-plasma x-ray lasers," Inst. Phys. Conf. Ser. 29, 156-160 (1996).

Hur, M.

W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. Fisch, M. Hur, and J. Wurtele, "Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses," Phys. Rev. Lett. 94, 045003 (2005).
[CrossRef] [PubMed]

Janulewicz, K. A.

K. A. Janulewicz, S. B. Healy, and G. J. Pert, "Modelling of OFI-plasma recombination X-ray lasers," Opt. Commun. 140, 165-178 (1997).
[CrossRef]

K. A. Janulewicz, S. B. Healy, and G. J. Pert, "Hydrodynamics perspective on OFI-plasma x-ray lasers," Inst. Phys. Conf. Ser. 29, 156-160 (1996).

Jones, T.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
[CrossRef]

Jones, W.

W. Jones and A. Ali, "Theory of short-wavelength lasers from recombining plasmas," Appl. Phys. Lett. 26, 450-451 (1975).
[CrossRef]

Korobkin, D. V.

D. V. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov, "Demonstration of soft x-ray lasing to ground state in Li III," Phys. Rev. Lett. 77, 5206-5209 (1996).
[CrossRef] [PubMed]

Krushelnick, K.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
[CrossRef]

Krushelnick, K. M.

Kubodera, S.

Y. Nagata, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, and K. Toyoda, "Soft-x-ray amplification of the lyman-alpha transition by optical-field-induced ionization," Phys. Rev. Lett. 71, 3774-3777 (1993).
[CrossRef] [PubMed]

Langdon, A.

C. Birdsall and A. Langdon, Plasma Physics via Computer Simulation (IOP, 2000).

Lotz, W.

W. Lotz, "Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions from hydrogen to calcium," Z. Phys. 216, 241-247 (1968).
[CrossRef]

Maron, Y.

V. Fisher, Y. Ralchenko, V. Bernshtam, A. Goldgirsh, Y. Maron, L. Vainshtein, and I. Bray, "Electron-impact-excitation cross sections of lithiumlike ions," Phys. Rev. A 56, 3726-3733 (1997).
[CrossRef]

Midorikawa, K.

Y. Nagata, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, and K. Toyoda, "Soft-x-ray amplification of the lyman-alpha transition by optical-field-induced ionization," Phys. Rev. Lett. 71, 3774-3777 (1993).
[CrossRef] [PubMed]

Moore, C.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
[CrossRef]

Morozov, A.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
[CrossRef]

Nagata, Y.

Y. Nagata, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, and K. Toyoda, "Soft-x-ray amplification of the lyman-alpha transition by optical-field-induced ionization," Phys. Rev. Lett. 71, 3774-3777 (1993).
[CrossRef] [PubMed]

Nam, C. H.

D. V. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov, "Demonstration of soft x-ray lasing to ground state in Li III," Phys. Rev. Lett. 77, 5206-5209 (1996).
[CrossRef] [PubMed]

Obara, M.

Y. Nagata, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, and K. Toyoda, "Soft-x-ray amplification of the lyman-alpha transition by optical-field-induced ionization," Phys. Rev. Lett. 71, 3774-3777 (1993).
[CrossRef] [PubMed]

Perelomov, A. M.

A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, "Ionization of atoms in an alternating electric field," Sov. Phys. JETP 23, 924-934 (1966).

Pert, G.

G. Pert, "Recombination and population inversion in plasmas generated by tunneling ionization," Phys. Rev. E 73, 066401 (2006).
[CrossRef]

Pert, G. J.

G. J. Pert, "X-ray lasers pumped by ultra-short light pulses," J. Phys. IV 11, 181-187 (2001).
[CrossRef]

K. A. Janulewicz, S. B. Healy, and G. J. Pert, "Modelling of OFI-plasma recombination X-ray lasers," Opt. Commun. 140, 165-178 (1997).
[CrossRef]

K. A. Janulewicz, S. B. Healy, and G. J. Pert, "Hydrodynamics perspective on OFI-plasma x-ray lasers," Inst. Phys. Conf. Ser. 29, 156-160 (1996).

Peyraud, J.

J. Peyraud and N. Peyraud, "Population inversion in laser plasmas," J. Appl. Phys. 43, 2993-2996 (1972).
[CrossRef]

Peyraud, N.

J. Peyraud and N. Peyraud, "Population inversion in laser plasmas," J. Appl. Phys. 43, 2993-2996 (1972).
[CrossRef]

Ping, Y.

W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. Fisch, M. Hur, and J. Wurtele, "Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses," Phys. Rev. Lett. 94, 045003 (2005).
[CrossRef] [PubMed]

Y. Ping, W. Cheng, S. Suckewer, D. Clark, and N. Fisch, "Amplification of ultrashort laser pulses by a resonant raman scheme in a gas-jet plasma," Phys. Rev. Lett. 92, 175007 (2004).
[CrossRef] [PubMed]

Popov, V. S.

A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, "Ionization of atoms in an alternating electric field," Sov. Phys. JETP 23, 924-934 (1966).

Ralchenko, Y.

V. Fisher, Y. Ralchenko, V. Bernshtam, A. Goldgirsh, Y. Maron, L. Vainshtein, and I. Bray, "Electron-impact-excitation cross sections of lithiumlike ions," Phys. Rev. A 56, 3726-3733 (1997).
[CrossRef]

Seely, J.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
[CrossRef]

Smirnov, B.

B. Smirnov and M. Chibisov, "Breaking up of atomic particles by an electric field and by electron collisions," Sov. Phys. JETP 22, 585-592 (1966).

Sprangle, P.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
[CrossRef]

Suckewer, S.

Y. Avitzour and S. Suckewer, "Numerical simulation of the effect of hydrogen on recombination gain in the transition to ground state of Li III," J. Opt. Soc. Am. B 23, 925-931 (2006).
[CrossRef]

W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. Fisch, M. Hur, and J. Wurtele, "Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses," Phys. Rev. Lett. 94, 045003 (2005).
[CrossRef] [PubMed]

Y. Ping, W. Cheng, S. Suckewer, D. Clark, and N. Fisch, "Amplification of ultrashort laser pulses by a resonant raman scheme in a gas-jet plasma," Phys. Rev. Lett. 92, 175007 (2004).
[CrossRef] [PubMed]

Y. Avitzour, S. Suckewer, and E. Valeo, "Numerical investigation of recombination gain in the Li III transition to ground state," Phys. Rev. E 69, 046409 (2004).
[CrossRef]

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
[CrossRef]

D. V. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov, "Demonstration of soft x-ray lasing to ground state in Li III," Phys. Rev. Lett. 77, 5206-5209 (1996).
[CrossRef] [PubMed]

K. M. Krushelnick, W. Tighe, and S. Suckewer, "X-ray laser studies of recombining lithium plasmas created by optical field ionization," J. Opt. Soc. Am. B 13, 306-311 (1996).
[CrossRef]

Tashiro, H.

Y. Nagata, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, and K. Toyoda, "Soft-x-ray amplification of the lyman-alpha transition by optical-field-induced ionization," Phys. Rev. Lett. 71, 3774-3777 (1993).
[CrossRef] [PubMed]

Terent'ev, M. V.

A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, "Ionization of atoms in an alternating electric field," Sov. Phys. JETP 23, 924-934 (1966).

Tighe, W.

Ting, A.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
[CrossRef]

Toyoda, K.

Y. Nagata, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, and K. Toyoda, "Soft-x-ray amplification of the lyman-alpha transition by optical-field-induced ionization," Phys. Rev. Lett. 71, 3774-3777 (1993).
[CrossRef] [PubMed]

Vainshtein, L.

V. Fisher, Y. Ralchenko, V. Bernshtam, A. Goldgirsh, Y. Maron, L. Vainshtein, and I. Bray, "Electron-impact-excitation cross sections of lithiumlike ions," Phys. Rev. A 56, 3726-3733 (1997).
[CrossRef]

Valeo, E.

Y. Avitzour, S. Suckewer, and E. Valeo, "Numerical investigation of recombination gain in the Li III transition to ground state," Phys. Rev. E 69, 046409 (2004).
[CrossRef]

S. Brunner and E. Valeo, "Simulations of electron transport in laser hot spots," Phys. Plasmas 9, 923-936 (2002).
[CrossRef]

Wurtele, J.

W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. Fisch, M. Hur, and J. Wurtele, "Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses," Phys. Rev. Lett. 94, 045003 (2005).
[CrossRef] [PubMed]

Zigler, A.

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Jones and A. Ali, "Theory of short-wavelength lasers from recombining plasmas," Appl. Phys. Lett. 26, 450-451 (1975).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Goltsov, A. Morozov, S. Suckewer, R. Elton, U. Feldman, K. Krushelnick, T. Jones, C. Moore, J. Seely, P. Sprangle, A. Ting, and A. Zigler, "Is efficiency of gain generation in Li III 13.5-nm laser with 0.25-μm subpicosecond pulses the same as with 1 μm?" IEEE J. Sel. Top. Quantum Electron. 5, 1453-1459 (1999).
[CrossRef]

Inst. Phys. Conf. Ser. (1)

K. A. Janulewicz, S. B. Healy, and G. J. Pert, "Hydrodynamics perspective on OFI-plasma x-ray lasers," Inst. Phys. Conf. Ser. 29, 156-160 (1996).

J. Appl. Phys. (1)

J. Peyraud and N. Peyraud, "Population inversion in laser plasmas," J. Appl. Phys. 43, 2993-2996 (1972).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. IV (1)

G. J. Pert, "X-ray lasers pumped by ultra-short light pulses," J. Phys. IV 11, 181-187 (2001).
[CrossRef]

Laser Part. Beams (1)

E. M. Epperlein, "Fokker-Planck modeling of electron-transport in laser-produced plasmas," Laser Part. Beams 12, 257-272 (1994).
[CrossRef]

Opt. Commun. (1)

K. A. Janulewicz, S. B. Healy, and G. J. Pert, "Modelling of OFI-plasma recombination X-ray lasers," Opt. Commun. 140, 165-178 (1997).
[CrossRef]

Phys. Plasmas (1)

S. Brunner and E. Valeo, "Simulations of electron transport in laser hot spots," Phys. Plasmas 9, 923-936 (2002).
[CrossRef]

Phys. Rev. A (1)

V. Fisher, Y. Ralchenko, V. Bernshtam, A. Goldgirsh, Y. Maron, L. Vainshtein, and I. Bray, "Electron-impact-excitation cross sections of lithiumlike ions," Phys. Rev. A 56, 3726-3733 (1997).
[CrossRef]

Phys. Rev. E (3)

G. Pert, "Recombination and population inversion in plasmas generated by tunneling ionization," Phys. Rev. E 73, 066401 (2006).
[CrossRef]

T. Ditmire, "Simulations of heating and electron energy distributions in optical field ionized plasmas," Phys. Rev. E 54, 6735-6740 (1996).
[CrossRef]

Y. Avitzour, S. Suckewer, and E. Valeo, "Numerical investigation of recombination gain in the Li III transition to ground state," Phys. Rev. E 69, 046409 (2004).
[CrossRef]

Phys. Rev. Lett. (5)

Y. Nagata, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, and K. Toyoda, "Soft-x-ray amplification of the lyman-alpha transition by optical-field-induced ionization," Phys. Rev. Lett. 71, 3774-3777 (1993).
[CrossRef] [PubMed]

Y. Ping, W. Cheng, S. Suckewer, D. Clark, and N. Fisch, "Amplification of ultrashort laser pulses by a resonant raman scheme in a gas-jet plasma," Phys. Rev. Lett. 92, 175007 (2004).
[CrossRef] [PubMed]

W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. Fisch, M. Hur, and J. Wurtele, "Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses," Phys. Rev. Lett. 94, 045003 (2005).
[CrossRef] [PubMed]

D. V. Korobkin, C. H. Nam, S. Suckewer, and A. Goltsov, "Demonstration of soft x-ray lasing to ground state in Li III," Phys. Rev. Lett. 77, 5206-5209 (1996).
[CrossRef] [PubMed]

P. Corkum, N. Burnett, and F. Brunel, "Above-threshold ionization in the long-wavelength limit," Phys. Rev. Lett. 62, 1259-1262 (1989).
[CrossRef] [PubMed]

Sov. Phys. JETP (2)

B. Smirnov and M. Chibisov, "Breaking up of atomic particles by an electric field and by electron collisions," Sov. Phys. JETP 22, 585-592 (1966).

A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, "Ionization of atoms in an alternating electric field," Sov. Phys. JETP 23, 924-934 (1966).

Z. Phys. (1)

W. Lotz, "Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions from hydrogen to calcium," Z. Phys. 216, 241-247 (1968).
[CrossRef]

Other (3)

C. Birdsall and A. Langdon, Plasma Physics via Computer Simulation (IOP, 2000).

H. Griem, Spectral Line Broadening by Plasmas (Academic, 1974).

H. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic setup for a recombination laser experiment.

Fig. 2
Fig. 2

Snapshots of the distribution function after ionization at different times during one plasma cycle. The distribution function (in arbitrary units) is presented as a function of radius (in units of the beam radius, r 0 ) and energy (in electron volts). The space-charge oscillation is seen going from parts (a) to (d). The calculation was done for C and H densities n C = 10 19 cm 3 , n H = 5 × 10 19 cm 3 , respectively, pump laser wavelength of λ = 400 nm , beam diameter of d = 10 μ m , pulse duration of τ = 20 fs , and peak intensity of I p = 8 × 10 18 W cm 2 . The plasma cycle for the above parameters (for fully ionized plasma) is T p = 2 π ω p 10 fs . The snapshots are given every 3 fs starting from 30 fs , where 0 is defined at the peak of the pulse.

Fig. 3
Fig. 3

Distribution function and average energy averaged over one plasma cycle. On the left: the plasma-cycle-averaged electron distribution function (in arbitrary units) as a function of radius (in units of beam radius, r 0 ) and energy (in units of electron volts). On the right: plots of the average energy of the electron versus radius. The average energies of the distribution functions given in Fig. 2 are plotted, along with the cycle-averaged average energy. All of the simulation parameters are the same as those for Fig. 2

Fig. 4
Fig. 4

Logarithmic contour plots of the maximum gain coefficient ( cm 1 ) for the 2 1 transition calculated using temperature-dependent rates. Gain is given as a function of temperature and atomic number, for four different ion densities (given in units of cm 3 ) (a) 5 × 10 18 , (b) 1 × 10 19 , (c) 5 × 10 19 , and (d) 1 × 10 20 .

Fig. 5
Fig. 5

Calculated results for carbon density of n C = 10 19 cm 3 , hydrogen density of n H = 10 20 cm 3 , pump beam diameter of d = 10 μ m , wavelength of λ = 400 nm , pulse duration of τ = 20 fs , and peak pump intensity of I p = 8 × 10 18 W cm 2 . (a) Comparison of the OFI-EDF and Maxwellian distribution function with the same average energy. (b) Gain in CVI ions with hydrogen added. Gain is presented in units of cm 1 versus time and space.

Fig. 6
Fig. 6

Compilation of the maximum gain coefficient achieved in CVI for different hydrogen densities and pump beam diameters. Both figures present the same data with different 3D visualization methods. The gain was calculated for the same plasma and pump laser parameters as Fig. 5, but for different hydrogen densities and pump beam diameters.

Fig. 7
Fig. 7

Compilation of the maximum gain coefficient achieved in C VI for different and pump beam durations and diameters. Both figures present the same data with different 3D visualization methods. All other parameters are the same as in Fig. 5. The pump peak intensities were different for different pulse durations to meet the requirement of full ionization. The intensities used are given in Table 1.

Tables (1)

Tables Icon

Table 1 Pump Intensities Used for the Different Pulse Durations and Corresponding Pulse Energies a

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

W s t = ω 0 2 U Z U h ( 2 l + 1 ) ( l + m ) ! 2 m ( m ) ! ( l m ) ! ( 2 e n * ) 2 n * 1 2 π n * U Z U h × [ 2 ( U Z U h ) E h , 0 E ] 2 n * m 1 exp [ 2 3 ( U Z U h ) 3 2 E h , 0 E ] ,
E q ( t ) = e 2 E ( t 0 ) 2 4 m e ω 2 ,
f p = e 2 4 m e ω 2 E 2 ,
f s f p 6 n ̃ e I ̃ ( r 0 λ ) 2 δ n e n e ,
d n k Z + d t = n e m k β m k Z + n m Z + n e n k Z + m k β k m Z + + m > k A m k Z + n m Z + n k Z + m < k A k m Z + + δ k , 1 n e m S m ( Z 1 ) + n m ( Z 1 ) + n e S k Z + n k Z + + α k Z + n e n 1 ( Z + 1 ) + δ k , 1 n e n k Z + m α m ( Z 1 ) + ,
G u l = n u σ u l F ,
σ u l = π r e f l u λ Δ λ λ g l g u L λ ( λ ) ,
n = ( n 1 n 2 n K ) ,
d n d t = n e 2 n 0 α n e ( diag ( S + β 1 ) + β t ) n + ( A t diag ( A 1 ) ) n n e 2 n 0 α + n e a ̂ n + b ̂ n ,
d n 0 d t = d n e d t = n e 2 n 2 α 1 + n e S n ,
1 n e d n e d t = 1 n 0 d n 0 d t 1 ,
d n d t A n + B ,
( n ̇ 1 n ̇ 2 ) = [ n e ( β 12 + S 1 ) n e β 21 + A 21 β 12 n e ( β 21 + S 2 ) A 21 ] ( n 1 n 2 ) + n e 2 n 0 ( α 1 α 2 ) .
A θ [ ξ 1 ξ 1 ] ,
G n 2 4 n 1 = 5 θ ( ξ B 1 B 2 ) ( e θ ( ξ + 1 ) t 1 ) ( 1 ξ ) [ exp ( B 1 + B 2 1 + ξ t ) 1 ] .
G 5 B 2 θ ( 1 e θ t ) ( e ( B 1 + B 2 ) t 1 ) .
t max = 1 B 1 + B 2 + θ ln 5 B 2 B 1 + B 2 .
α k = C g n n 2 Z 2 T 2 exp ( Ryd z 2 n 2 T 2 ) E 1 ( Ryd Z 2 n 2 T 2 ) ,
G max G ( t = t max ) 1 + 5 δ ( 1 ( 5 γ ) γ ( δ + γ ) ) ( 5 γ ) δ ( δ + γ ) ,
β 21 4.44 × 10 7 Ryd Z 2 T cm 3 s .
α 2 8 × 10 45 1 Ryd Z 2 T 2 exp ( Ryd Z 2 4 T 2 ) E 1 ( Ryd Z 2 4 T 2 ) cm 6 s ,
A 21 = 3.36 × 10 6 Ryd Z 2 .
δ 2 n ̃ e n ̃ 0 T 3 2 exp ( Ryd Z 2 4 T 2 ) E 1 ( Ryd Z 2 4 T 2 ) ,
G max 2.4 δ .

Metrics