Abstract

A general theory of the parametric gain of amplified spontaneous emission (ASE) noise in periodic dispersion-managed (DM) optical links is presented, based on a linearization of the nonlinear Schrödinger equation around a constant-wave input signal. Closed-form expressions are presented of the in-phase and quadrature ASE power spectral densities (PSDs), valid in the limit of infinitely many spans, for a limited total cumulated nonlinear phase and in-line dispersion, a typical case for nonsoliton systems. PSDs are shown to solely depend on the in-line cumulated dispersion and on the so-called DM kernel. Kernel expressions for both typical terrestrial and submarine DM links are provided. By Taylor expanding the kernel in frequency, we introduce a definition of DM map strength that is more appropriate for limited nonlinear phase DM systems with lossy transmission fibers than the standard definition for soliton systems. Various important special cases of PSDs are discussed in detail. Novel insights, to our knowledge, into the effect of a postdispersion-compensating fiber on such PSDs are included. Finally, examples of application of the PSD formulas to the performance evaluation of both on–off keying and differential phase keying modulated systems are provided.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (63)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription