Abstract

We experimentally demonstrated the quantum anticorrelation between fundamental (1064nm) and second-harmonic (532nm) fields in an external cavity-enhanced singly resonant periodically poled KTP (PPKTP) frequency doubler. Fundamental amplitude squeezing of 0.5dB and second-harmonic amplitude squeezing of 0.3dB were generated simultaneously at a pump power of 6.1mW. Meanwhile, quantum anticorrelation of 0.64dB between the squeezed fundamental and the second-harmonic fields was observed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, "Generation of squeezed light by intracavity frequency doubling," Phys. Rev. A 38, 4931-4934 (1988).
    [Crossref] [PubMed]
  2. A. Sizmann, R. J. Horowicz, G. Wagner, and G. Leuchs, "Observation of amplitude squeezing of the up-converted mode in second harmonic generation," Opt. Commun. 80, 138-142 (1990).
    [Crossref]
  3. R. Paschotta, M. Collett, P. Kürz, K. Feidler, H. A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807-3810 (1994).
    [Crossref] [PubMed]
  4. H. M. Wisman, M. S. Taubman, and H.-A. Bachor, "Feedback-enhanced squeezing in second-harmonic generation," Phys. Rev. A 51, 3227-3233 (1995).
    [Crossref]
  5. N. B. Grosse, W. P. Bowen, K. Mckenzie, and P. K. Lam, "Harmonic entanglement with second-order nonlinearity," Phys. Rev. Lett. 96, 063601 (2006).
    [Crossref] [PubMed]
  6. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurásek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
    [Crossref] [PubMed]
  7. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Storage and retrieval of single photons transmitted between remote quantum memories," Nature 438, 833-836 (2005).
    [Crossref] [PubMed]
  8. M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
    [Crossref] [PubMed]
  9. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, "Measurement-induced entanglement for excitation stored in remote atomic ensembles," Nature 438, 828-832 (2005).
    [Crossref] [PubMed]

2006 (1)

N. B. Grosse, W. P. Bowen, K. Mckenzie, and P. K. Lam, "Harmonic entanglement with second-order nonlinearity," Phys. Rev. Lett. 96, 063601 (2006).
[Crossref] [PubMed]

2005 (3)

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Storage and retrieval of single photons transmitted between remote quantum memories," Nature 438, 833-836 (2005).
[Crossref] [PubMed]

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[Crossref] [PubMed]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, "Measurement-induced entanglement for excitation stored in remote atomic ensembles," Nature 438, 828-832 (2005).
[Crossref] [PubMed]

2004 (1)

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurásek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[Crossref] [PubMed]

1995 (1)

H. M. Wisman, M. S. Taubman, and H.-A. Bachor, "Feedback-enhanced squeezing in second-harmonic generation," Phys. Rev. A 51, 3227-3233 (1995).
[Crossref]

1994 (1)

R. Paschotta, M. Collett, P. Kürz, K. Feidler, H. A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807-3810 (1994).
[Crossref] [PubMed]

1990 (1)

A. Sizmann, R. J. Horowicz, G. Wagner, and G. Leuchs, "Observation of amplitude squeezing of the up-converted mode in second harmonic generation," Opt. Commun. 80, 138-142 (1990).
[Crossref]

1988 (1)

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, "Generation of squeezed light by intracavity frequency doubling," Phys. Rev. A 38, 4931-4934 (1988).
[Crossref] [PubMed]

André, A.

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[Crossref] [PubMed]

Bachor, H. A.

R. Paschotta, M. Collett, P. Kürz, K. Feidler, H. A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807-3810 (1994).
[Crossref] [PubMed]

Bachor, H.-A.

H. M. Wisman, M. S. Taubman, and H.-A. Bachor, "Feedback-enhanced squeezing in second-harmonic generation," Phys. Rev. A 51, 3227-3233 (1995).
[Crossref]

Bowen, W. P.

N. B. Grosse, W. P. Bowen, K. Mckenzie, and P. K. Lam, "Harmonic entanglement with second-order nonlinearity," Phys. Rev. Lett. 96, 063601 (2006).
[Crossref] [PubMed]

Chanelière, T.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Storage and retrieval of single photons transmitted between remote quantum memories," Nature 438, 833-836 (2005).
[Crossref] [PubMed]

Chou, C. W.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, "Measurement-induced entanglement for excitation stored in remote atomic ensembles," Nature 438, 828-832 (2005).
[Crossref] [PubMed]

Cirac, J. I.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurásek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[Crossref] [PubMed]

Collett, M.

R. Paschotta, M. Collett, P. Kürz, K. Feidler, H. A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807-3810 (1994).
[Crossref] [PubMed]

de Riedmatten, H.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, "Measurement-induced entanglement for excitation stored in remote atomic ensembles," Nature 438, 828-832 (2005).
[Crossref] [PubMed]

Eisaman, M. D.

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[Crossref] [PubMed]

Feidler, K.

R. Paschotta, M. Collett, P. Kürz, K. Feidler, H. A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807-3810 (1994).
[Crossref] [PubMed]

Felinto, D.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, "Measurement-induced entanglement for excitation stored in remote atomic ensembles," Nature 438, 828-832 (2005).
[Crossref] [PubMed]

Fiurásek, J.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurásek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[Crossref] [PubMed]

Fleischhauer, M.

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[Crossref] [PubMed]

Grosse, N. B.

N. B. Grosse, W. P. Bowen, K. Mckenzie, and P. K. Lam, "Harmonic entanglement with second-order nonlinearity," Phys. Rev. Lett. 96, 063601 (2006).
[Crossref] [PubMed]

Hall, J. L.

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, "Generation of squeezed light by intracavity frequency doubling," Phys. Rev. A 38, 4931-4934 (1988).
[Crossref] [PubMed]

Horowicz, R. J.

A. Sizmann, R. J. Horowicz, G. Wagner, and G. Leuchs, "Observation of amplitude squeezing of the up-converted mode in second harmonic generation," Opt. Commun. 80, 138-142 (1990).
[Crossref]

Jenkins, S. D.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Storage and retrieval of single photons transmitted between remote quantum memories," Nature 438, 833-836 (2005).
[Crossref] [PubMed]

Julsgaard, B.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurásek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[Crossref] [PubMed]

Kennedy, T. A. B.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Storage and retrieval of single photons transmitted between remote quantum memories," Nature 438, 833-836 (2005).
[Crossref] [PubMed]

Kimble, H. J.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, "Measurement-induced entanglement for excitation stored in remote atomic ensembles," Nature 438, 828-832 (2005).
[Crossref] [PubMed]

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, "Generation of squeezed light by intracavity frequency doubling," Phys. Rev. A 38, 4931-4934 (1988).
[Crossref] [PubMed]

Kürz, P.

R. Paschotta, M. Collett, P. Kürz, K. Feidler, H. A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807-3810 (1994).
[Crossref] [PubMed]

Kuzmich, A.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Storage and retrieval of single photons transmitted between remote quantum memories," Nature 438, 833-836 (2005).
[Crossref] [PubMed]

Lam, P. K.

N. B. Grosse, W. P. Bowen, K. Mckenzie, and P. K. Lam, "Harmonic entanglement with second-order nonlinearity," Phys. Rev. Lett. 96, 063601 (2006).
[Crossref] [PubMed]

Lan, S.-Y.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Storage and retrieval of single photons transmitted between remote quantum memories," Nature 438, 833-836 (2005).
[Crossref] [PubMed]

Leuchs, G.

A. Sizmann, R. J. Horowicz, G. Wagner, and G. Leuchs, "Observation of amplitude squeezing of the up-converted mode in second harmonic generation," Opt. Commun. 80, 138-142 (1990).
[Crossref]

Lukin, M. D.

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[Crossref] [PubMed]

Massou, F.

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[Crossref] [PubMed]

Matsukevich, D. N.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Storage and retrieval of single photons transmitted between remote quantum memories," Nature 438, 833-836 (2005).
[Crossref] [PubMed]

Mckenzie, K.

N. B. Grosse, W. P. Bowen, K. Mckenzie, and P. K. Lam, "Harmonic entanglement with second-order nonlinearity," Phys. Rev. Lett. 96, 063601 (2006).
[Crossref] [PubMed]

Mlynek, J.

R. Paschotta, M. Collett, P. Kürz, K. Feidler, H. A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807-3810 (1994).
[Crossref] [PubMed]

Paschotta, R.

R. Paschotta, M. Collett, P. Kürz, K. Feidler, H. A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807-3810 (1994).
[Crossref] [PubMed]

Pereira, S. F.

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, "Generation of squeezed light by intracavity frequency doubling," Phys. Rev. A 38, 4931-4934 (1988).
[Crossref] [PubMed]

Polyakov, S. V.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, "Measurement-induced entanglement for excitation stored in remote atomic ensembles," Nature 438, 828-832 (2005).
[Crossref] [PubMed]

Polzik, E. S.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurásek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[Crossref] [PubMed]

Sherson, J.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurásek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[Crossref] [PubMed]

Sizmann, A.

A. Sizmann, R. J. Horowicz, G. Wagner, and G. Leuchs, "Observation of amplitude squeezing of the up-converted mode in second harmonic generation," Opt. Commun. 80, 138-142 (1990).
[Crossref]

Taubman, M. S.

H. M. Wisman, M. S. Taubman, and H.-A. Bachor, "Feedback-enhanced squeezing in second-harmonic generation," Phys. Rev. A 51, 3227-3233 (1995).
[Crossref]

van Enk, S. J.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, "Measurement-induced entanglement for excitation stored in remote atomic ensembles," Nature 438, 828-832 (2005).
[Crossref] [PubMed]

Wagner, G.

A. Sizmann, R. J. Horowicz, G. Wagner, and G. Leuchs, "Observation of amplitude squeezing of the up-converted mode in second harmonic generation," Opt. Commun. 80, 138-142 (1990).
[Crossref]

Wisman, H. M.

H. M. Wisman, M. S. Taubman, and H.-A. Bachor, "Feedback-enhanced squeezing in second-harmonic generation," Phys. Rev. A 51, 3227-3233 (1995).
[Crossref]

Xiao, M.

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, "Generation of squeezed light by intracavity frequency doubling," Phys. Rev. A 38, 4931-4934 (1988).
[Crossref] [PubMed]

Zibrov, A. S.

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[Crossref] [PubMed]

Nature (4)

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurásek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature 432, 482-486 (2004).
[Crossref] [PubMed]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, "Storage and retrieval of single photons transmitted between remote quantum memories," Nature 438, 833-836 (2005).
[Crossref] [PubMed]

M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005).
[Crossref] [PubMed]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, "Measurement-induced entanglement for excitation stored in remote atomic ensembles," Nature 438, 828-832 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Sizmann, R. J. Horowicz, G. Wagner, and G. Leuchs, "Observation of amplitude squeezing of the up-converted mode in second harmonic generation," Opt. Commun. 80, 138-142 (1990).
[Crossref]

Phys. Rev. A (2)

H. M. Wisman, M. S. Taubman, and H.-A. Bachor, "Feedback-enhanced squeezing in second-harmonic generation," Phys. Rev. A 51, 3227-3233 (1995).
[Crossref]

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, "Generation of squeezed light by intracavity frequency doubling," Phys. Rev. A 38, 4931-4934 (1988).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

N. B. Grosse, W. P. Bowen, K. Mckenzie, and P. K. Lam, "Harmonic entanglement with second-order nonlinearity," Phys. Rev. Lett. 96, 063601 (2006).
[Crossref] [PubMed]

R. Paschotta, M. Collett, P. Kürz, K. Feidler, H. A. Bachor, and J. Mlynek, "Bright squeezed light from a singly resonant frequency doubler," Phys. Rev. Lett. 72, 3807-3810 (1994).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. FI, Faraday isolator; PBS, polarizing beam splitter; FR, Faraday rotator; HWP, half-wave plate; DBS, dichroic beam splitter; D1, D2, photodetectors.

Fig. 2
Fig. 2

Green-light amplitude-squeezed spectrum at a pump power of 6.1 mW . Curve a is the QNL, and curve b is the green-light amplitude noise. The resolution bandwidth and the video bandwidth are 30 kHz and 100 Hz , respectively.

Fig. 3
Fig. 3

Fundamental-light amplitude-squeezed spectrum at a pump power of 6.1 mW . Curve a is the QNL, and curve b is the fundamental-light amplitude noise. The parameters of the spectrum analyzer are the same as in Fig. 2.

Fig. 4
Fig. 4

Observation of quantum anticorrelation between fundamental and SH fields. Curve a is the sum of individual amplitude quadrature noise power of the SH and fundamental fields. Curve b is the noise power of the amplitude quadrature sum of SH field and fundamental fields. The parameters of the spectrum analyzer are the same as in Fig. 2.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

δ X 1 out ( ν ) = ( γ 0 γ 1 3 μ α 2 + i 2 π ν ) δ X 1 in ( ν ) + 2 2 γ 0 μ α 2 δ X 2 in ( ν ) + 2 γ 0 γ 1 δ X loss ( ν ) γ + 3 μ α 2 i 2 π ν ,
δ X 2 out ( ν ) = ( γ + μ α 2 + i 2 π ν ) δ X 2 in ( ν ) + 2 μ α 2 [ 2 γ 0 δ X 1 in ( ν ) + 2 γ 1 δ X loss ( ν ) ] γ + 3 μ α 2 i 2 π ν ,
V 1 = δ X 1 out ( ν ) δ X 1 out ( ν ) = 1 4 γ 0 μ α 2 ( γ 0 + γ 1 + 3 μ α 2 ) 2 + ( 2 π ν ) 2 ,
V 2 = δ X 2 out ( ν ) δ X 2 out ( ν ) = 1 8 μ 2 α 4 ( γ 0 + γ 1 + 3 μ α 2 ) 2 + ( 2 π ν ) 2 .
C = δ [ X 1 out ( ν ) + X 2 out ( ν ) ] δ [ X 1 out ( ν ) + X 2 out ( ν ) ] δ X 1 out ( ν ) δ X 1 out ( ν ) + δ X 2 out ( ν ) δ X 2 out ( ν ) = 1 + δ X 1 out ( ν ) δ X 2 out ( ν ) + δ X 2 out ( ν ) δ X 1 out ( ν ) δ X 1 out ( ν ) δ X 1 out ( ν ) + δ X 2 out ( ν ) δ X 2 out ( ν ) ,
δ X 1 out ( ν ) δ X 2 out ( ν ) = δ X 2 out ( ν ) δ X 1 out ( ν ) = 4 μ α 2 2 γ 0 μ α 2 ( γ 0 + γ 1 + 3 μ α 2 ) 2 + ( 2 π ν ) 2 .
n 1 = g 1 a 1 a 1 , n 2 = g 2 a 2 a 2 ,
a 1 = η 1 a 1 + 1 η 1 c v , a 2 = η 2 a 2 + 1 η 2 d v ,
X 1 = a 1 + a 1 , X 2 = a 2 + a 2 , X 1 = a 1 + a 1 , X 2 = a 2 + a 2 , X c = c v + c v , X d = d v + d v .
δ n 1 ( ν ) = g 1 I 1 δ X 1 ( ν ) = g 1 I 1 [ η 1 δ X 1 ( ν ) + 1 η 1 δ X c ( ν ) ] ,
δ n 2 ( ν ) = g 2 I 2 δ X 2 ( ν ) = g 2 I 2 [ η 2 δ X 2 ( ν ) + 1 η 2 δ X d ( ν ) ] ,
δ [ n 1 ( ν ) + n 2 ( ν ) ] δ [ n 1 ( ν ) + n 2 ( ν ) ] δ n 1 ( ν ) δ n 1 ( ν ) + δ n 2 ( ν ) δ n 2 ( ν ) = 1 + g 1 g 2 η 1 η 2 I 1 I 2 [ δ X 1 ( ν ) δ X 2 ( ν ) + δ X 2 ( ν ) δ X 1 ( ν ) ] δ n 1 ( ν ) δ n 1 ( ν ) + δ n 2 ( ν ) δ n 2 ( ν ) ,
δ n 1 ( ν ) δ n 1 ( ν ) + δ n 2 ( ν ) δ n 2 ( ν ) = g 1 2 η 1 I 1 δ X 1 ( ν ) δ X 1 ( ν ) + g 1 2 ( 1 η 1 ) I 1 + g 2 2 η 2 I 2 δ X 2 ( ν ) δ X 2 ( ν ) + g 2 2 ( 1 η 2 ) I 2 .
1 + δ X 1 ( ν ) δ X 2 ( ν ) + δ X 2 ( ν ) δ X 1 ( ν ) δ X 1 ( ν ) δ X 1 ( ν ) + δ X 2 ( ν ) δ X 2 ( ν ) ,

Metrics