Abstract

Sensitivity enhancement of a whispering-gallery-mode microsphere resonance-shift sensor by coating of a high-refractive index (RI) layer is examined for TM polarization. The enhancement of sensitivity in response to particle adsorption or a RI change of the surroundings at the optimized layer thickness is greater for the TM mode compared with the TE mode, but the TM mode requires a thicker layer. A particular choice of the layer thickness allows the TE and TM shifts to match. Matching of the resonance frequency of the two modes is also examined.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Noto, F. Vollmer, D. Keng, I. Teraoka, and S. Arnold, "Nanolayer characterization through wavelength multiplexing of a microsphere resonator," Opt. Lett. 30, 510-512 (2005).
    [CrossRef] [PubMed]
  2. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fana, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
    [CrossRef]
  3. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4049 (2002).
    [CrossRef]
  4. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and S. Arnold, "Multiplexed DNA detection by optical resonances in microspheres," Biophys. J. 85, 1974-1979 (2003).
    [CrossRef] [PubMed]
  5. M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, "Molecular weight dependence of a whispering gallery mode biosensor," Appl. Phys. Lett. 87, 223901 (2005).
    [CrossRef]
  6. N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, "Label-free protease sensors based on optical microsphere resonators," Sens. Lett. 3, 1-5 (2005).
    [CrossRef]
  7. H. Quan and Z. Guo, "Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors," J. Quant. Spectrosc. Radiat. Transf. 93, 231-243 (2005).
    [CrossRef]
  8. M. Horn and G. Schweiger, "Optical temperature sensor based on whispering gallery modes," in DGaO Proceedings (2005), Vol. 106, p. b28.
  9. G. Guan, S. Arnold, and V. Otugen, "Temperature measurements using a microoptical sensor based on whispering gallery modes," AIAA J. 44, 2385-2389 (2006).
    [CrossRef]
  10. V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Strain-tunable high-Q optical microsphere resonator," Opt. Commun. 145, 86-90 (1998).
    [CrossRef]
  11. M. Kozhevnikov, T. Ioppolo, V. Stepaniuk, V. Sheverev, and V. Otugen, "Optical force sensor based on whispering gallery mode resonators," presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Paper 2006-649.
  12. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-274 (2003).
    [CrossRef] [PubMed]
  13. I. Teraoka and S. Arnold, "Enhancing sensitivity of a whispering gallery mode microsphere sensor by a high-refractive index surface layer," J. Opt. Soc. Am. B 23, 1434-1441 (2006).
    [CrossRef]
  14. O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, "Enhancing sensitivity of a whispering gallery mode bio-sensor by sub-wavelength confinement," Appl. Phys. Lett. 89, 223901 (2006).
    [CrossRef]
  15. I. Teraoka and S. Arnold, "Theory on resonance shifts in TE and TM whispering gallery modes by non-radial perturbations for sensing applications," J. Opt. Soc. Am. B 23, 1381-1389 (2006).
    [CrossRef]
  16. B. R. Johnson, "Theory of morphology-dependent resonances: shape resonances and width formulas," J. Opt. Soc. Am. A 10, 343-352 (1993).
    [CrossRef]
  17. I. Teraoka, S. Arnold, and F. Vollmer, "Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium," J. Opt. Soc. Am. B 20, 1937-1946 (2003).
    [CrossRef]
  18. I. Teraoka and S. Arnold, "Dielectric property of particles at interface in random sequential adsorption and its application to whispering gallery mode resonance-shift sensors," J. Appl. Phys. (to be published).

2006

G. Guan, S. Arnold, and V. Otugen, "Temperature measurements using a microoptical sensor based on whispering gallery modes," AIAA J. 44, 2385-2389 (2006).
[CrossRef]

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, "Enhancing sensitivity of a whispering gallery mode bio-sensor by sub-wavelength confinement," Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

I. Teraoka and S. Arnold, "Theory on resonance shifts in TE and TM whispering gallery modes by non-radial perturbations for sensing applications," J. Opt. Soc. Am. B 23, 1381-1389 (2006).
[CrossRef]

I. Teraoka and S. Arnold, "Enhancing sensitivity of a whispering gallery mode microsphere sensor by a high-refractive index surface layer," J. Opt. Soc. Am. B 23, 1434-1441 (2006).
[CrossRef]

2005

M. Noto, F. Vollmer, D. Keng, I. Teraoka, and S. Arnold, "Nanolayer characterization through wavelength multiplexing of a microsphere resonator," Opt. Lett. 30, 510-512 (2005).
[CrossRef] [PubMed]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fana, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, "Molecular weight dependence of a whispering gallery mode biosensor," Appl. Phys. Lett. 87, 223901 (2005).
[CrossRef]

N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, "Label-free protease sensors based on optical microsphere resonators," Sens. Lett. 3, 1-5 (2005).
[CrossRef]

H. Quan and Z. Guo, "Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors," J. Quant. Spectrosc. Radiat. Transf. 93, 231-243 (2005).
[CrossRef]

2003

2002

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4049 (2002).
[CrossRef]

1998

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Strain-tunable high-Q optical microsphere resonator," Opt. Commun. 145, 86-90 (1998).
[CrossRef]

1993

Arnold, S.

I. Teraoka and S. Arnold, "Enhancing sensitivity of a whispering gallery mode microsphere sensor by a high-refractive index surface layer," J. Opt. Soc. Am. B 23, 1434-1441 (2006).
[CrossRef]

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, "Enhancing sensitivity of a whispering gallery mode bio-sensor by sub-wavelength confinement," Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

I. Teraoka and S. Arnold, "Theory on resonance shifts in TE and TM whispering gallery modes by non-radial perturbations for sensing applications," J. Opt. Soc. Am. B 23, 1381-1389 (2006).
[CrossRef]

G. Guan, S. Arnold, and V. Otugen, "Temperature measurements using a microoptical sensor based on whispering gallery modes," AIAA J. 44, 2385-2389 (2006).
[CrossRef]

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, "Molecular weight dependence of a whispering gallery mode biosensor," Appl. Phys. Lett. 87, 223901 (2005).
[CrossRef]

M. Noto, F. Vollmer, D. Keng, I. Teraoka, and S. Arnold, "Nanolayer characterization through wavelength multiplexing of a microsphere resonator," Opt. Lett. 30, 510-512 (2005).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and S. Arnold, "Multiplexed DNA detection by optical resonances in microspheres," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and S. Arnold, "Multiplexed DNA detection by optical resonances in microspheres," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

I. Teraoka, S. Arnold, and F. Vollmer, "Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium," J. Opt. Soc. Am. B 20, 1937-1946 (2003).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4049 (2002).
[CrossRef]

I. Teraoka and S. Arnold, "Dielectric property of particles at interface in random sequential adsorption and its application to whispering gallery mode resonance-shift sensors," J. Appl. Phys. (to be published).

Braun, D.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and S. Arnold, "Multiplexed DNA detection by optical resonances in microspheres," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4049 (2002).
[CrossRef]

Culic-Viskota, J.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, "Enhancing sensitivity of a whispering gallery mode bio-sensor by sub-wavelength confinement," Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

Fan, X.

N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, "Label-free protease sensors based on optical microsphere resonators," Sens. Lett. 3, 1-5 (2005).
[CrossRef]

Fana, X.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fana, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Gaathon, O.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, "Enhancing sensitivity of a whispering gallery mode bio-sensor by sub-wavelength confinement," Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

Guan, G.

G. Guan, S. Arnold, and V. Otugen, "Temperature measurements using a microoptical sensor based on whispering gallery modes," AIAA J. 44, 2385-2389 (2006).
[CrossRef]

Guo, Z.

H. Quan and Z. Guo, "Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors," J. Quant. Spectrosc. Radiat. Transf. 93, 231-243 (2005).
[CrossRef]

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fana, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, "Label-free protease sensors based on optical microsphere resonators," Sens. Lett. 3, 1-5 (2005).
[CrossRef]

Haroche, S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Strain-tunable high-Q optical microsphere resonator," Opt. Commun. 145, 86-90 (1998).
[CrossRef]

Holler, S.

Horn, M.

M. Horn and G. Schweiger, "Optical temperature sensor based on whispering gallery modes," in DGaO Proceedings (2005), Vol. 106, p. b28.

Ilchenko, V. S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Strain-tunable high-Q optical microsphere resonator," Opt. Commun. 145, 86-90 (1998).
[CrossRef]

Ioppolo, T.

M. Kozhevnikov, T. Ioppolo, V. Stepaniuk, V. Sheverev, and V. Otugen, "Optical force sensor based on whispering gallery mode resonators," presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Paper 2006-649.

Johnson, B. R.

Keng, D.

M. Noto, F. Vollmer, D. Keng, I. Teraoka, and S. Arnold, "Nanolayer characterization through wavelength multiplexing of a microsphere resonator," Opt. Lett. 30, 510-512 (2005).
[CrossRef] [PubMed]

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, "Molecular weight dependence of a whispering gallery mode biosensor," Appl. Phys. Lett. 87, 223901 (2005).
[CrossRef]

Khoshsima, M.

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, "Molecular weight dependence of a whispering gallery mode biosensor," Appl. Phys. Lett. 87, 223901 (2005).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4049 (2002).
[CrossRef]

Kolchenko, V.

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, "Molecular weight dependence of a whispering gallery mode biosensor," Appl. Phys. Lett. 87, 223901 (2005).
[CrossRef]

Kozhevnikov, M.

M. Kozhevnikov, T. Ioppolo, V. Stepaniuk, V. Sheverev, and V. Otugen, "Optical force sensor based on whispering gallery mode resonators," presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Paper 2006-649.

Lefèvre-Seguin, V.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Strain-tunable high-Q optical microsphere resonator," Opt. Commun. 145, 86-90 (1998).
[CrossRef]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4049 (2002).
[CrossRef]

Mihnev, M.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, "Enhancing sensitivity of a whispering gallery mode bio-sensor by sub-wavelength confinement," Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

Noto, M.

M. Noto, F. Vollmer, D. Keng, I. Teraoka, and S. Arnold, "Nanolayer characterization through wavelength multiplexing of a microsphere resonator," Opt. Lett. 30, 510-512 (2005).
[CrossRef] [PubMed]

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, "Molecular weight dependence of a whispering gallery mode biosensor," Appl. Phys. Lett. 87, 223901 (2005).
[CrossRef]

Otugen, V.

G. Guan, S. Arnold, and V. Otugen, "Temperature measurements using a microoptical sensor based on whispering gallery modes," AIAA J. 44, 2385-2389 (2006).
[CrossRef]

M. Kozhevnikov, T. Ioppolo, V. Stepaniuk, V. Sheverev, and V. Otugen, "Optical force sensor based on whispering gallery mode resonators," presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Paper 2006-649.

Oveys, H.

N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, "Label-free protease sensors based on optical microsphere resonators," Sens. Lett. 3, 1-5 (2005).
[CrossRef]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fana, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Quan, H.

H. Quan and Z. Guo, "Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors," J. Quant. Spectrosc. Radiat. Transf. 93, 231-243 (2005).
[CrossRef]

Raimond, J.-M.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Strain-tunable high-Q optical microsphere resonator," Opt. Commun. 145, 86-90 (1998).
[CrossRef]

Schweiger, G.

M. Horn and G. Schweiger, "Optical temperature sensor based on whispering gallery modes," in DGaO Proceedings (2005), Vol. 106, p. b28.

Sheverev, V.

M. Kozhevnikov, T. Ioppolo, V. Stepaniuk, V. Sheverev, and V. Otugen, "Optical force sensor based on whispering gallery mode resonators," presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Paper 2006-649.

Stepaniuk, V.

M. Kozhevnikov, T. Ioppolo, V. Stepaniuk, V. Sheverev, and V. Otugen, "Optical force sensor based on whispering gallery mode resonators," presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Paper 2006-649.

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fana, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Teraoka, I.

I. Teraoka and S. Arnold, "Enhancing sensitivity of a whispering gallery mode microsphere sensor by a high-refractive index surface layer," J. Opt. Soc. Am. B 23, 1434-1441 (2006).
[CrossRef]

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, "Enhancing sensitivity of a whispering gallery mode bio-sensor by sub-wavelength confinement," Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

I. Teraoka and S. Arnold, "Theory on resonance shifts in TE and TM whispering gallery modes by non-radial perturbations for sensing applications," J. Opt. Soc. Am. B 23, 1381-1389 (2006).
[CrossRef]

M. Noto, F. Vollmer, D. Keng, I. Teraoka, and S. Arnold, "Nanolayer characterization through wavelength multiplexing of a microsphere resonator," Opt. Lett. 30, 510-512 (2005).
[CrossRef] [PubMed]

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, "Molecular weight dependence of a whispering gallery mode biosensor," Appl. Phys. Lett. 87, 223901 (2005).
[CrossRef]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and S. Arnold, "Multiplexed DNA detection by optical resonances in microspheres," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

I. Teraoka, S. Arnold, and F. Vollmer, "Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium," J. Opt. Soc. Am. B 20, 1937-1946 (2003).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4049 (2002).
[CrossRef]

I. Teraoka and S. Arnold, "Dielectric property of particles at interface in random sequential adsorption and its application to whispering gallery mode resonance-shift sensors," J. Appl. Phys. (to be published).

Treussart, F.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Strain-tunable high-Q optical microsphere resonator," Opt. Commun. 145, 86-90 (1998).
[CrossRef]

Velichansky, V. L.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Strain-tunable high-Q optical microsphere resonator," Opt. Commun. 145, 86-90 (1998).
[CrossRef]

Volikov, P. S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Strain-tunable high-Q optical microsphere resonator," Opt. Commun. 145, 86-90 (1998).
[CrossRef]

Vollmer, F.

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fana, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

White, I. M.

N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, "Label-free protease sensors based on optical microsphere resonators," Sens. Lett. 3, 1-5 (2005).
[CrossRef]

AIAA J.

G. Guan, S. Arnold, and V. Otugen, "Temperature measurements using a microoptical sensor based on whispering gallery modes," AIAA J. 44, 2385-2389 (2006).
[CrossRef]

Appl. Phys. Lett.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fana, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4049 (2002).
[CrossRef]

M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, "Molecular weight dependence of a whispering gallery mode biosensor," Appl. Phys. Lett. 87, 223901 (2005).
[CrossRef]

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, "Enhancing sensitivity of a whispering gallery mode bio-sensor by sub-wavelength confinement," Appl. Phys. Lett. 89, 223901 (2006).
[CrossRef]

Biophys. J.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and S. Arnold, "Multiplexed DNA detection by optical resonances in microspheres," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Quant. Spectrosc. Radiat. Transf.

H. Quan and Z. Guo, "Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors," J. Quant. Spectrosc. Radiat. Transf. 93, 231-243 (2005).
[CrossRef]

Opt. Commun.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Strain-tunable high-Q optical microsphere resonator," Opt. Commun. 145, 86-90 (1998).
[CrossRef]

Opt. Lett.

Sens. Lett.

N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, "Label-free protease sensors based on optical microsphere resonators," Sens. Lett. 3, 1-5 (2005).
[CrossRef]

Other

M. Kozhevnikov, T. Ioppolo, V. Stepaniuk, V. Sheverev, and V. Otugen, "Optical force sensor based on whispering gallery mode resonators," presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Paper 2006-649.

M. Horn and G. Schweiger, "Optical temperature sensor based on whispering gallery modes," in DGaO Proceedings (2005), Vol. 106, p. b28.

I. Teraoka and S. Arnold, "Dielectric property of particles at interface in random sequential adsorption and its application to whispering gallery mode resonance-shift sensors," J. Appl. Phys. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Radial function T l ( r ) of the first radial mode of TM polarization in a silica microsphere coated with a layer of RI of 1.6 and a different thickness immersed in water. The total sphere radius is held at 100 μ m . The layer thickness t is indicated adjacent to each curve. The mode number l is 666 for all the plots.

Fig. 2
Fig. 2

Peak position r peak of the radial function T l ( r ) for TM modes (solid curves) and S l ( r ) for TE modes (dashed curves) in a silica microsphere coated with a layer of RI of 1.7 (total radius is held at 100 μ m ) in water, plotted as a function of layer thickness t for the first two radial modes ( ν = 1 , red; 2, blue). The shaded area (upper right) represents the layer.

Fig. 3
Fig. 3

Resonance wave vector k of WGM in a silica microsphere coated with a high RI ( n 3 = 1.7 ) layer in water is plotted as a function of layer thickness t for the first three radial modes ( ν = 1 , red; 2, blue; 3, green). The total radius is held at 100 μ m . Solid and dashed curves represent TM and TE modes, respectively. The mode number l is 666 ( ν = 1 ) , 654 ( ν = 2 ) , and 644 ( ν = 3 ) .

Fig. 4
Fig. 4

Response function G ads of TM modes (solid curves) and TE modes (dashed curves) to uniform adsorption of small spherical particles at a low density for the first two radial modes ( ν = 1 , red; 2, blue), plotted as a function of thickness t of the coating layer of n 3 = 1.7 .

Fig. 5
Fig. 5

Layer thickness t peak (red online) and the response G ads , peak (blue online) at the maximum of G ads in the first radial mode of TE (dashed curves) and TM (solid curves), plotted as a function of the layer RI n 3 .

Fig. 6
Fig. 6

TM-to-TE shift ratio of the first radial mode for adsorption of small spherical particles at a low density, plotted as a function of thickness t of the coating layer. The four curves are for different RIs of the layer, n 3 , indicated adjacent to the curves.

Fig. 7
Fig. 7

Example of resonance frequency matching between TE (dashed curves) and TM (solid curves) of the first three radial modes ( ν = 1 , red; 2, blue; 3, green) in a microsphere coated with a high-RI layer of n 3 = 2.2 . The arrows indicate the matching. The mode number l is 666 ( ν = 1 ) , 654 ( ν = 2 ) , and 644 ( ν = 3 ) .

Fig. 8
Fig. 8

Map of the layer RI n 3 and thickness t for TE–TM resonance frequency matching of the second radial mode (blue online) and third radial mode (green online).

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = { n 1 ( r < a t ) n 3 ( a t < r < a ) n 2 ( a < r ) } .
E = exp ( i m φ ) [ n ( r ) ] 2 k 2 r [ T l ( r ) Y l m ( θ ) + T l ( r ) r Z l m ( θ ) ] ,
[ d 2 d r 2 1 n 2 d ( n 2 ) d r d d r + l ( l + 1 ) r 2 ] T l = [ n ( r ) ] 2 k 2 T l .
Y l m ( θ ) = θ P l m ( cos θ ) e ̂ θ + i m sin θ P l m ( cos θ ) e ̂ φ ,
Z l m ( θ ) = l ( l + 1 ) P l m ( cos θ ) e ̂ r ,
T l ( r ) = { A l ψ l ( n 1 k r ) ( r < a t ) C l ψ l ( n 3 k r ) + D l χ l ( n 3 k r ) ( a t < r < a ) B l χ l ( n 2 k r ) ( a < r ) } ,
n 3 n 2 χ l ( n 2 k a ) χ l ( n 2 k a ) = ( C l D l ) ψ l ( n 3 k a ) + χ l ( n 3 k a ) ( C l D l ) ψ l ( n 3 k a ) + χ l ( n 3 k a ) ,
C l D l = n 1 ψ l ( z 1 ) χ l ( z 3 ) n 3 ψ l ( z 1 ) χ l ( z 3 ) n 1 ψ l ( z 1 ) ψ l ( z 3 ) + n 3 ψ l ( z 1 ) ψ l ( z 3 ) ,
δ k k 0 = V p δ ε r E 0 * E p d r V ε r E 0 * E 0 d r ,
V ε r E 0 * E 0 d r = 1 k 0 4 0 d r n 2 ( T 0 2 Y l m 2 d Ω + T 0 2 r 2 Z l m 2 d Ω ) ,
V ε r E 0 * E 0 d r = W l m k 0 4 0 d r n 2 ( T 0 2 + l ( l + 1 ) r 2 T 0 2 ) ,
W l m 0 π sin θ d θ 0 2 π d φ Y l m 2 = 4 π ( l + m ) ! l ( l + 1 ) ( l m ) ! ( 2 l + 1 ) .
V ε r E 0 * E 0 d r = W l m k 0 2 0 T 0 2 d r .
I 1 = ( A l 2 n 1 k ) Ψ l [ n 1 k ( a t ) ] ,
I 2 = ( B l 2 n 2 k ) Χ l ( n 2 k a ) ,
I 3 = ( C l 2 n 3 k ) { Ψ l ( n 3 k a ) Ψ l [ n 3 k ( a t ) ] } + ( D l 2 n 3 k ) { Χ l [ n 3 k ( a t ) ] Χ l ( n 3 k a ) } + ( 2 C l D l n 3 k ) { Ξ l ( n 3 k a ) Ξ l [ n 3 k ( a t ) ] } ,
Ψ l ( z ) 0 z [ ψ l ( x ) ] 2 d x = { z ψ l 2 + [ l ( l + 1 ) z z ] ψ l 2 + ψ l ψ l } 2 ,
Χ l ( z ) z [ χ l ( x ) ] 2 d x = { z χ l 2 + [ l ( l + 1 ) z z ] χ l 2 + χ l χ l } 2 ,
Ξ l ( z ) ψ l ( z ) χ l ( z ) d z = const + { [ z l ( l + 1 ) z ] ψ l χ l ( ψ l χ l + ψ l χ l ) 2 + z χ l ψ l } 2 .
V p δ ε r E p E 0 * d r = δ ( n 2 ) W l m n p 2 k 2 n 2 2 k 0 2 a d r ( T 0 T + l ( l + 1 ) r 2 T 0 T ) .
V p δ ε r E p E 0 * d r = δ ( n 2 ) W l m n p 2 k 2 n 2 2 k 0 2 [ T 0 ( a + ) T ( a ) + n 2 2 k 0 2 a T 0 T d r ] ,
V p δ ε r E p E 0 * d r = δ ( n 2 ) W l m B l 2 a 2 n 2 2 k 0 2 [ χ l 2 + ( l ( l + 1 ) ( n 2 k 0 a ) 2 1 ) χ l 2 χ l χ l n 2 k 0 a ] ,
G RI δ k k 0 δ ( n 2 ) = B l 2 a 4 n 2 2 ( I 1 + I 3 + I 2 ) [ χ l 2 + ( l ( l + 1 ) ( n 2 k 0 a ) 2 1 ) χ l 2 χ l χ l n 2 k 0 a ] .
V p δ ε r E 0 * E p d r = 3 n 2 2 ( n p 2 n 2 2 ) n p 2 + 2 n 2 2 V p N p 4 π E 0 ( a , Ω ) 2 d Ω ,
V p δ ε r E 0 * E p d r = 3 n 2 2 ( n p 2 n 2 2 ) n p 2 + 2 n 2 2 V p N p 4 π W l m ( n 2 k 0 a ) 4 [ [ a T 0 ( a + ) ] 2 + l ( l + 1 ) [ T 0 ( a ) ] 2 ] .
G ads δ k k 0 [ 3 n 2 2 ( n p 2 n 2 2 ) n p 2 + 2 n 2 2 V p N p 4 π a 3 ] 1 ,
G ads = a B l 2 2 n 2 2 ( I 1 + I 3 + I 2 ) [ χ l 2 + l ( l + 1 ) ( n 2 k 0 a ) 2 χ l 2 ] .

Metrics