Abstract

We present results from a direct measurement of the elliptical character of the evanescent part of linearly in-plane polarized light, totally internally reflected from a quartz half-sphere. These results have been obtained by invoking polarization-sensitive and light-emitting organic nanofibers. The angular dependencies of the mean-square electric field vector components parallel and perpendicular to the surface plane agree with predictions from the Fresnel equations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  2. S. Huard, Polarization of Light (Wiley & Sons, 1997).
  3. F. de Fornel, Evanescent Waves (Springer, 2001).
  4. W. Hansen, "Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium," J. Opt. Soc. Am. 58, 380-390 (1968).
    [CrossRef]
  5. T. Kawalec, M. J. Kasprowicz, L. Jozefowski, and T. Dohnalik, "Zeeman effect observed in the EW," Acta Phys. Pol. A 105, 349-355 (2004).
  6. F. Balzer and H.-G. Rubahn, "Dipole-assisted self-assembly of light-emitting p-nP needles on mica," Appl. Phys. Lett. 79, 3860-3860 (2001).
    [CrossRef]
  7. H. Plank, R. Resel, S. Purger, J. Keckes, A. Thierry, B. Lotz, A. Andreev, N. S. Sariciftci, H. Sitter, "Heteroepitaxial growth of self-assemled highly ordered para-sexiphenyl films: a crystallographic study," Phys. Rev. B 64, 235423 (2001).
    [CrossRef]
  8. F. Balzer and H.-G. Rubahn, "Growth control and optics of organic nanoaggregates," Adv. Funct. Mater. 15, 17-24 (2005).
    [CrossRef]

2005

F. Balzer and H.-G. Rubahn, "Growth control and optics of organic nanoaggregates," Adv. Funct. Mater. 15, 17-24 (2005).
[CrossRef]

2004

T. Kawalec, M. J. Kasprowicz, L. Jozefowski, and T. Dohnalik, "Zeeman effect observed in the EW," Acta Phys. Pol. A 105, 349-355 (2004).

2001

F. Balzer and H.-G. Rubahn, "Dipole-assisted self-assembly of light-emitting p-nP needles on mica," Appl. Phys. Lett. 79, 3860-3860 (2001).
[CrossRef]

H. Plank, R. Resel, S. Purger, J. Keckes, A. Thierry, B. Lotz, A. Andreev, N. S. Sariciftci, H. Sitter, "Heteroepitaxial growth of self-assemled highly ordered para-sexiphenyl films: a crystallographic study," Phys. Rev. B 64, 235423 (2001).
[CrossRef]

1968

Andreev, A.

H. Plank, R. Resel, S. Purger, J. Keckes, A. Thierry, B. Lotz, A. Andreev, N. S. Sariciftci, H. Sitter, "Heteroepitaxial growth of self-assemled highly ordered para-sexiphenyl films: a crystallographic study," Phys. Rev. B 64, 235423 (2001).
[CrossRef]

Balzer, F.

F. Balzer and H.-G. Rubahn, "Growth control and optics of organic nanoaggregates," Adv. Funct. Mater. 15, 17-24 (2005).
[CrossRef]

F. Balzer and H.-G. Rubahn, "Dipole-assisted self-assembly of light-emitting p-nP needles on mica," Appl. Phys. Lett. 79, 3860-3860 (2001).
[CrossRef]

de Fornel, F.

F. de Fornel, Evanescent Waves (Springer, 2001).

Dohnalik, T.

T. Kawalec, M. J. Kasprowicz, L. Jozefowski, and T. Dohnalik, "Zeeman effect observed in the EW," Acta Phys. Pol. A 105, 349-355 (2004).

Hansen, W.

Huard, S.

S. Huard, Polarization of Light (Wiley & Sons, 1997).

Jozefowski, L.

T. Kawalec, M. J. Kasprowicz, L. Jozefowski, and T. Dohnalik, "Zeeman effect observed in the EW," Acta Phys. Pol. A 105, 349-355 (2004).

Kasprowicz, M. J.

T. Kawalec, M. J. Kasprowicz, L. Jozefowski, and T. Dohnalik, "Zeeman effect observed in the EW," Acta Phys. Pol. A 105, 349-355 (2004).

Kawalec, T.

T. Kawalec, M. J. Kasprowicz, L. Jozefowski, and T. Dohnalik, "Zeeman effect observed in the EW," Acta Phys. Pol. A 105, 349-355 (2004).

Keckes, J.

H. Plank, R. Resel, S. Purger, J. Keckes, A. Thierry, B. Lotz, A. Andreev, N. S. Sariciftci, H. Sitter, "Heteroepitaxial growth of self-assemled highly ordered para-sexiphenyl films: a crystallographic study," Phys. Rev. B 64, 235423 (2001).
[CrossRef]

Lotz, B.

H. Plank, R. Resel, S. Purger, J. Keckes, A. Thierry, B. Lotz, A. Andreev, N. S. Sariciftci, H. Sitter, "Heteroepitaxial growth of self-assemled highly ordered para-sexiphenyl films: a crystallographic study," Phys. Rev. B 64, 235423 (2001).
[CrossRef]

Plank, H.

H. Plank, R. Resel, S. Purger, J. Keckes, A. Thierry, B. Lotz, A. Andreev, N. S. Sariciftci, H. Sitter, "Heteroepitaxial growth of self-assemled highly ordered para-sexiphenyl films: a crystallographic study," Phys. Rev. B 64, 235423 (2001).
[CrossRef]

Purger, S.

H. Plank, R. Resel, S. Purger, J. Keckes, A. Thierry, B. Lotz, A. Andreev, N. S. Sariciftci, H. Sitter, "Heteroepitaxial growth of self-assemled highly ordered para-sexiphenyl films: a crystallographic study," Phys. Rev. B 64, 235423 (2001).
[CrossRef]

Resel, R.

H. Plank, R. Resel, S. Purger, J. Keckes, A. Thierry, B. Lotz, A. Andreev, N. S. Sariciftci, H. Sitter, "Heteroepitaxial growth of self-assemled highly ordered para-sexiphenyl films: a crystallographic study," Phys. Rev. B 64, 235423 (2001).
[CrossRef]

Rubahn, H.-G.

F. Balzer and H.-G. Rubahn, "Growth control and optics of organic nanoaggregates," Adv. Funct. Mater. 15, 17-24 (2005).
[CrossRef]

F. Balzer and H.-G. Rubahn, "Dipole-assisted self-assembly of light-emitting p-nP needles on mica," Appl. Phys. Lett. 79, 3860-3860 (2001).
[CrossRef]

Sariciftci, N. S.

H. Plank, R. Resel, S. Purger, J. Keckes, A. Thierry, B. Lotz, A. Andreev, N. S. Sariciftci, H. Sitter, "Heteroepitaxial growth of self-assemled highly ordered para-sexiphenyl films: a crystallographic study," Phys. Rev. B 64, 235423 (2001).
[CrossRef]

Sitter, H.

H. Plank, R. Resel, S. Purger, J. Keckes, A. Thierry, B. Lotz, A. Andreev, N. S. Sariciftci, H. Sitter, "Heteroepitaxial growth of self-assemled highly ordered para-sexiphenyl films: a crystallographic study," Phys. Rev. B 64, 235423 (2001).
[CrossRef]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

Thierry, A.

H. Plank, R. Resel, S. Purger, J. Keckes, A. Thierry, B. Lotz, A. Andreev, N. S. Sariciftci, H. Sitter, "Heteroepitaxial growth of self-assemled highly ordered para-sexiphenyl films: a crystallographic study," Phys. Rev. B 64, 235423 (2001).
[CrossRef]

Acta Phys. Pol. A

T. Kawalec, M. J. Kasprowicz, L. Jozefowski, and T. Dohnalik, "Zeeman effect observed in the EW," Acta Phys. Pol. A 105, 349-355 (2004).

Adv. Funct. Mater.

F. Balzer and H.-G. Rubahn, "Growth control and optics of organic nanoaggregates," Adv. Funct. Mater. 15, 17-24 (2005).
[CrossRef]

Appl. Phys. Lett.

F. Balzer and H.-G. Rubahn, "Dipole-assisted self-assembly of light-emitting p-nP needles on mica," Appl. Phys. Lett. 79, 3860-3860 (2001).
[CrossRef]

J. Opt. Soc. Am.

Phys. Rev. B

H. Plank, R. Resel, S. Purger, J. Keckes, A. Thierry, B. Lotz, A. Andreev, N. S. Sariciftci, H. Sitter, "Heteroepitaxial growth of self-assemled highly ordered para-sexiphenyl films: a crystallographic study," Phys. Rev. B 64, 235423 (2001).
[CrossRef]

Other

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

S. Huard, Polarization of Light (Wiley & Sons, 1997).

F. de Fornel, Evanescent Waves (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Plane wave on the dielectric interface at TIR, showing the coordinate system and the definition of TE and TM polarization cases. E 0 TE and E 0 TM are electric vectors of the incident wave.

Fig. 2
Fig. 2

Mean-square electric field components at the mica—air interface for n 1 = 1.58 and n 2 = 1 as a function of the angle of incidence.

Fig. 3
Fig. 3

Predicted state of polarization of EW for TE and TM polarizations of the incident wave.

Fig. 4
Fig. 4

(a) Fluorescence microscopy image (excitation at 370 nm ) of a dense array of nanofibers. (b) Atomic force microscopy image ( 10 × 10 μ m 2 ) of a similar dense array, denoting the uniform height. The dashed line represents the position of the cross section presented at the bottom.

Fig. 5
Fig. 5

Experimental setup. MO, microscope objective; F, filter; PMT, photomultiplier; Ph, pinhole; P, polarizer; HWP, half-wave plate.

Fig. 6
Fig. 6

Typical experimental intensity profiles for TM and TE polarizations in the two-phase configuration as a function of the angle of rotation. The fitted curve is a sin 2 ( α ) .

Fig. 7
Fig. 7

Calculated and experimental ratio of mean-square values of electric vectors TE and TM in two-phase configuration as a function of the angle of incidence. Mica, air: n 1 = 1.58 and n 2 = 1 .

Fig. 8
Fig. 8

Calculated and measured mean-square electric field x and y component ratio for the two-phase configuration as a function of the angle of incidence for n 1 = 1.58 and n 2 = 1 ..

Fig. 9
Fig. 9

Sketch of the three-phase TIR configuration.

Fig. 10
Fig. 10

Calculated and measured ratios of mean-square electric vector components for the three-phase configuration as a function of the angle of incidence. The indices of refraction are n 1 = 1.48 , n 2 = 1 , and n 3 = 1.58 . The air-gap thickness is 200 nm , and the electric field in the gap was calculated to be as close as 50 nm (mean nanofiber thickness) to the mica surface.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E y 2 = 1 2 t TE 2 e 4 π z λ Im n 2 2 n 1 2 sin 2 θ E 0 TE 2 ,
E x 2 = 1 2 n 2 2 n 1 2 sin 2 θ n 2 t TM 2 e 4 π z λ Im n 2 2 n 1 2 sin 2 θ E 0 TM 2 ,
E z 2 = 1 2 n 1 sin θ n 2 t TM 2 e 4 π z λ Im n 2 2 n 1 2 sin 2 θ E 0 TM 2 ,
t TE = 2 n 1 cos θ n 1 cos θ + n 2 2 n 1 2 sin 2 θ ,
t TM = 2 n 1 n 2 cos θ n 2 2 cos θ + n 1 n 2 2 n 1 2 sin 2 θ ,
E x E 0 TM = 2 cos θ sin 2 θ n 21 2 n 21 4 cos 2 θ + sin 2 θ n 21 2 e ( i ( δ TM + π ) 2 ) ,
E y E 0 TE = 2 cos θ 1 n 21 2 e ( i δ TE 2 ) ,
E z E 0 TM = 2 cos θ sin θ n 21 4 cos 2 θ + sin 2 θ n 21 2 e ( i δ TM 2 ) ,

Metrics