Abstract

Cascaded optical parametric generation in lithium niobate waveguides involves simultaneous quasi-phase-matching of optical parametric generation and sum-frequency generation. We study details of this process in reverse-proton-exchange lithium niobate waveguides with quasi-phase-matching gratings from 6to42mm in length. We identify the cascaded products in the time domain using a frequency-resolved cross correlator and study cascaded optical parametric generation under different levels of pump depletion. With phase-modulated gratings, we demonstrate control over the wavelength of the near-transform-limited signal pulses from cascaded optical parametric generation. With its low threshold and controllable temporal properties, cascaded optical parametric generation in reverse-proton-exchange waveguides can be a promising candidate for a tunable light source.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, "Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3," Opt. Lett. 22, 105-107 (1997).
    [CrossRef] [PubMed]
  2. X. Xie, A. M. Schober, C. Langrock, R. V. Roussev, J. R. Kurz, and M. M. Fejer, "Picojoule threshold, picosecond optical parametric generation in reverse proton-exchanged lithium niobate waveguides," J. Opt. Soc. Am. B 21, 1397-1402 (2004).
    [CrossRef]
  3. C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, "A poor man's FROG," Opt. Commun. 186, 329-333 (2000).
    [CrossRef]
  4. T. Südmeyer, F. Brunner, R. Paschotta, T. Usami, H. Ito, M. Nakamura, K. Kitamura, and U. Keller, "Femtosecond optical parametric generation (OPG) in periodically poled stoichiometric LiTaO3 with >1 W average power," in Conference on Lasers and Electro-Optics (Optical Society of America, 2002), Paper CTuO4.
  5. J. K. Ranka, L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode," Opt. Lett. 22, 1344-1346 (1997).
    [CrossRef]
  6. D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
    [CrossRef]
  7. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  8. A. V. Smith, "Group-velocity-matched three-wave mixing in birefringent crystals," Opt. Lett. 26, 719-721 (2001).
    [CrossRef]
  9. P. D. Trapani, A. Andreoni, C. Solcia, P. Foggi, R. Danielius, A. Dubietis, and A. Piskarskas, "Matching of group velocities in three-wave parametric interaction with femtosecond pulses and application to traveling-wave generators," J. Opt. Soc. Am. B 12, 2237-2244 (1995).
    [CrossRef]
  10. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, "Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure," Opt. Lett. 28, 558-560 (2003).
    [CrossRef] [PubMed]
  11. M. H. Chou, K. R. Parameswaran, and M. M. Fejer, "Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides," Opt. Lett. 24, 1157-1159 (1999).
    [CrossRef]
  12. T. Kartaloglu, Z. G. Figen, and O. Aytur, "Simultaneous phase matching of optical parametric oscillation and second-harmonic generation in aperiodically poled lithium niobate," J. Opt. Soc. Am. B 20, 343-349 (2003).
    [CrossRef]
  13. H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, "Aperiodic optical superlattices engineered for optical frequency conversion," Appl. Phys. Lett. 79, 728-730 (2001).
    [CrossRef]
  14. R. Roussev, X. P. Xie, K. R. Parameswaran, M. M. Fejer, and J. Tian, "Accurate semiempirical model for annealed proton exchanged waveguides in z-cut lithium niobate," in Lasers and Electro-Optics Society Meeting Proceedings (IEEE, 2003), Paper TuS4.
  15. J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, "Amplitude modulation and apodization of quasi-phase-matched interactions," Opt. Lett. 31, 604-606 (2006).
    [CrossRef] [PubMed]
  16. M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, "A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter," IEEE J. Quantum Electron. 39, 1327-1333 (2003).
    [CrossRef]
  17. M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, "Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications," Opt. Lett. 29, 1775-1777 (2004).
    [CrossRef] [PubMed]
  18. T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, "Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide," Electron. Lett. 40, 1359-1361 (2004).
    [CrossRef]
  19. J. Huang, J. R. Kurz, C. Langrock, A. M. Schober, and M. M. Fejer, "Quasi-group-velocity matching using integrated-optic structures," Opt. Lett. 29, 2482-2484 (2004).
    [CrossRef] [PubMed]
  20. X. Xie, J. Huang, and M. M. Fejer, "Narrow-linewidth near-degenerate optical parametric generation achieved with quasi-group-velocity-matching in lithium niobate waveguides," Opt. Lett. 31, 2190-2192 (2006).
    [CrossRef] [PubMed]

2006 (2)

2004 (4)

2003 (3)

2001 (2)

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, "Aperiodic optical superlattices engineered for optical frequency conversion," Appl. Phys. Lett. 79, 728-730 (2001).
[CrossRef]

A. V. Smith, "Group-velocity-matched three-wave mixing in birefringent crystals," Opt. Lett. 26, 719-721 (2001).
[CrossRef]

2000 (1)

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, "A poor man's FROG," Opt. Commun. 186, 329-333 (2000).
[CrossRef]

1999 (1)

1997 (3)

1995 (1)

Andreoni, A.

Arbore, M. A.

Asobe, M.

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, "Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure," Opt. Lett. 28, 558-560 (2003).
[CrossRef] [PubMed]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, "A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter," IEEE J. Quantum Electron. 39, 1327-1333 (2003).
[CrossRef]

Aytur, O.

Baltuska, A.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Brunner, F.

T. Südmeyer, F. Brunner, R. Paschotta, T. Usami, H. Ito, M. Nakamura, K. Kitamura, and U. Keller, "Femtosecond optical parametric generation (OPG) in periodically poled stoichiometric LiTaO3 with >1 W average power," in Conference on Lasers and Electro-Optics (Optical Society of America, 2002), Paper CTuO4.

Chou, M. H.

Danielius, R.

Dubietis, A.

Fejer, M. M.

J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, "Amplitude modulation and apodization of quasi-phase-matched interactions," Opt. Lett. 31, 604-606 (2006).
[CrossRef] [PubMed]

X. Xie, J. Huang, and M. M. Fejer, "Narrow-linewidth near-degenerate optical parametric generation achieved with quasi-group-velocity-matching in lithium niobate waveguides," Opt. Lett. 31, 2190-2192 (2006).
[CrossRef] [PubMed]

J. Huang, J. R. Kurz, C. Langrock, A. M. Schober, and M. M. Fejer, "Quasi-group-velocity matching using integrated-optic structures," Opt. Lett. 29, 2482-2484 (2004).
[CrossRef] [PubMed]

M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, "Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications," Opt. Lett. 29, 1775-1777 (2004).
[CrossRef] [PubMed]

X. Xie, A. M. Schober, C. Langrock, R. V. Roussev, J. R. Kurz, and M. M. Fejer, "Picojoule threshold, picosecond optical parametric generation in reverse proton-exchanged lithium niobate waveguides," J. Opt. Soc. Am. B 21, 1397-1402 (2004).
[CrossRef]

M. H. Chou, K. R. Parameswaran, and M. M. Fejer, "Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides," Opt. Lett. 24, 1157-1159 (1999).
[CrossRef]

A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, "Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3," Opt. Lett. 22, 105-107 (1997).
[CrossRef] [PubMed]

R. Roussev, X. P. Xie, K. R. Parameswaran, M. M. Fejer, and J. Tian, "Accurate semiempirical model for annealed proton exchanged waveguides in z-cut lithium niobate," in Lasers and Electro-Optics Society Meeting Proceedings (IEEE, 2003), Paper TuS4.

Fermann, M. E.

Figen, Z. G.

Foggi, P.

Fukuda, K.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, "Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide," Electron. Lett. 40, 1359-1361 (2004).
[CrossRef]

Gaeta, L.

Galvanauskas, A.

Harter, D.

Huang, J.

Hum, D. S.

Ito, H.

T. Südmeyer, F. Brunner, R. Paschotta, T. Usami, H. Ito, M. Nakamura, K. Kitamura, and U. Keller, "Femtosecond optical parametric generation (OPG) in periodically poled stoichiometric LiTaO3 with >1 W average power," in Conference on Lasers and Electro-Optics (Optical Society of America, 2002), Paper CTuO4.

Jundt, D. H.

Kai, T.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, "Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide," Electron. Lett. 40, 1359-1361 (2004).
[CrossRef]

Kartaloglu, T.

Katz, M.

Keller, U.

T. Südmeyer, F. Brunner, R. Paschotta, T. Usami, H. Ito, M. Nakamura, K. Kitamura, and U. Keller, "Femtosecond optical parametric generation (OPG) in periodically poled stoichiometric LiTaO3 with >1 W average power," in Conference on Lasers and Electro-Optics (Optical Society of America, 2002), Paper CTuO4.

Kitamura, K.

T. Südmeyer, F. Brunner, R. Paschotta, T. Usami, H. Ito, M. Nakamura, K. Kitamura, and U. Keller, "Femtosecond optical parametric generation (OPG) in periodically poled stoichiometric LiTaO3 with >1 W average power," in Conference on Lasers and Electro-Optics (Optical Society of America, 2002), Paper CTuO4.

Krasinski, J. S.

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, "A poor man's FROG," Opt. Commun. 186, 329-333 (2000).
[CrossRef]

Kurz, J. R.

Langrock, C.

Liu, H.

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, "Aperiodic optical superlattices engineered for optical frequency conversion," Appl. Phys. Lett. 79, 728-730 (2001).
[CrossRef]

Miller, G. D.

Ming, N. B.

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, "Aperiodic optical superlattices engineered for optical frequency conversion," Appl. Phys. Lett. 79, 728-730 (2001).
[CrossRef]

Miyazawa, H.

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, "Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure," Opt. Lett. 28, 558-560 (2003).
[CrossRef] [PubMed]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, "A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter," IEEE J. Quantum Electron. 39, 1327-1333 (2003).
[CrossRef]

Mizuuchi, K.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, "Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide," Electron. Lett. 40, 1359-1361 (2004).
[CrossRef]

Nakamura, M.

T. Südmeyer, F. Brunner, R. Paschotta, T. Usami, H. Ito, M. Nakamura, K. Kitamura, and U. Keller, "Femtosecond optical parametric generation (OPG) in periodically poled stoichiometric LiTaO3 with >1 W average power," in Conference on Lasers and Electro-Optics (Optical Society of America, 2002), Paper CTuO4.

Nakayama, I.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, "Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide," Electron. Lett. 40, 1359-1361 (2004).
[CrossRef]

Nishida, Y.

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, "A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter," IEEE J. Quantum Electron. 39, 1327-1333 (2003).
[CrossRef]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, "Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure," Opt. Lett. 28, 558-560 (2003).
[CrossRef] [PubMed]

Parameswaran, K. R.

Paschotta, R.

T. Südmeyer, F. Brunner, R. Paschotta, T. Usami, H. Ito, M. Nakamura, K. Kitamura, and U. Keller, "Femtosecond optical parametric generation (OPG) in periodically poled stoichiometric LiTaO3 with >1 W average power," in Conference on Lasers and Electro-Optics (Optical Society of America, 2002), Paper CTuO4.

Piskarskas, A.

Pshenichnikov, M. S.

Radzewicz, C.

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, "A poor man's FROG," Opt. Commun. 186, 329-333 (2000).
[CrossRef]

Ranka, J. K.

Roussev, R.

R. Roussev, X. P. Xie, K. R. Parameswaran, M. M. Fejer, and J. Tian, "Accurate semiempirical model for annealed proton exchanged waveguides in z-cut lithium niobate," in Lasers and Electro-Optics Society Meeting Proceedings (IEEE, 2003), Paper TuS4.

Roussev, R. V.

Route, R. K.

Schober, A. M.

Smith, A. V.

Solcia, C.

Südmeyer, T.

T. Südmeyer, F. Brunner, R. Paschotta, T. Usami, H. Ito, M. Nakamura, K. Kitamura, and U. Keller, "Femtosecond optical parametric generation (OPG) in periodically poled stoichiometric LiTaO3 with >1 W average power," in Conference on Lasers and Electro-Optics (Optical Society of America, 2002), Paper CTuO4.

Sugita, T.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, "Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide," Electron. Lett. 40, 1359-1361 (2004).
[CrossRef]

Suzuki, H.

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, "A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter," IEEE J. Quantum Electron. 39, 1327-1333 (2003).
[CrossRef]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, "Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure," Opt. Lett. 28, 558-560 (2003).
[CrossRef] [PubMed]

Tadanaga, O.

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, "A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter," IEEE J. Quantum Electron. 39, 1327-1333 (2003).
[CrossRef]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, "Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure," Opt. Lett. 28, 558-560 (2003).
[CrossRef] [PubMed]

Takahashi, K.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, "Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide," Electron. Lett. 40, 1359-1361 (2004).
[CrossRef]

Tian, J.

R. Roussev, X. P. Xie, K. R. Parameswaran, M. M. Fejer, and J. Tian, "Accurate semiempirical model for annealed proton exchanged waveguides in z-cut lithium niobate," in Lasers and Electro-Optics Society Meeting Proceedings (IEEE, 2003), Paper TuS4.

Trapani, P. D.

Usami, T.

T. Südmeyer, F. Brunner, R. Paschotta, T. Usami, H. Ito, M. Nakamura, K. Kitamura, and U. Keller, "Femtosecond optical parametric generation (OPG) in periodically poled stoichiometric LiTaO3 with >1 W average power," in Conference on Lasers and Electro-Optics (Optical Society of America, 2002), Paper CTuO4.

Wasylczyk, P.

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, "A poor man's FROG," Opt. Commun. 186, 329-333 (2000).
[CrossRef]

Wiersma, D. A.

Xie, X.

Xie, X. P.

J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, "Amplitude modulation and apodization of quasi-phase-matched interactions," Opt. Lett. 31, 604-606 (2006).
[CrossRef] [PubMed]

R. Roussev, X. P. Xie, K. R. Parameswaran, M. M. Fejer, and J. Tian, "Accurate semiempirical model for annealed proton exchanged waveguides in z-cut lithium niobate," in Lasers and Electro-Optics Society Meeting Proceedings (IEEE, 2003), Paper TuS4.

Yamamoto, K.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, "Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide," Electron. Lett. 40, 1359-1361 (2004).
[CrossRef]

Zhang, C.

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, "Aperiodic optical superlattices engineered for optical frequency conversion," Appl. Phys. Lett. 79, 728-730 (2001).
[CrossRef]

Zhu, S. N.

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, "Aperiodic optical superlattices engineered for optical frequency conversion," Appl. Phys. Lett. 79, 728-730 (2001).
[CrossRef]

Zhu, Y. Y.

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, "Aperiodic optical superlattices engineered for optical frequency conversion," Appl. Phys. Lett. 79, 728-730 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, "Aperiodic optical superlattices engineered for optical frequency conversion," Appl. Phys. Lett. 79, 728-730 (2001).
[CrossRef]

Electron. Lett. (1)

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, "Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide," Electron. Lett. 40, 1359-1361 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, "A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter," IEEE J. Quantum Electron. 39, 1327-1333 (2003).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, "A poor man's FROG," Opt. Commun. 186, 329-333 (2000).
[CrossRef]

Opt. Lett. (10)

J. K. Ranka, L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode," Opt. Lett. 22, 1344-1346 (1997).
[CrossRef]

D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
[CrossRef]

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, "Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure," Opt. Lett. 28, 558-560 (2003).
[CrossRef] [PubMed]

M. H. Chou, K. R. Parameswaran, and M. M. Fejer, "Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides," Opt. Lett. 24, 1157-1159 (1999).
[CrossRef]

A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, "Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3," Opt. Lett. 22, 105-107 (1997).
[CrossRef] [PubMed]

A. V. Smith, "Group-velocity-matched three-wave mixing in birefringent crystals," Opt. Lett. 26, 719-721 (2001).
[CrossRef]

J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, "Amplitude modulation and apodization of quasi-phase-matched interactions," Opt. Lett. 31, 604-606 (2006).
[CrossRef] [PubMed]

M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, "Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications," Opt. Lett. 29, 1775-1777 (2004).
[CrossRef] [PubMed]

J. Huang, J. R. Kurz, C. Langrock, A. M. Schober, and M. M. Fejer, "Quasi-group-velocity matching using integrated-optic structures," Opt. Lett. 29, 2482-2484 (2004).
[CrossRef] [PubMed]

X. Xie, J. Huang, and M. M. Fejer, "Narrow-linewidth near-degenerate optical parametric generation achieved with quasi-group-velocity-matching in lithium niobate waveguides," Opt. Lett. 31, 2190-2192 (2006).
[CrossRef] [PubMed]

Other (3)

R. Roussev, X. P. Xie, K. R. Parameswaran, M. M. Fejer, and J. Tian, "Accurate semiempirical model for annealed proton exchanged waveguides in z-cut lithium niobate," in Lasers and Electro-Optics Society Meeting Proceedings (IEEE, 2003), Paper TuS4.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

T. Südmeyer, F. Brunner, R. Paschotta, T. Usami, H. Ito, M. Nakamura, K. Kitamura, and U. Keller, "Femtosecond optical parametric generation (OPG) in periodically poled stoichiometric LiTaO3 with >1 W average power," in Conference on Lasers and Electro-Optics (Optical Society of America, 2002), Paper CTuO4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram of the constraints for cascaded OPG involving simultaneous QPM of OPG and SFG between the pump and the signal. k p , k s , k i , and k SFG are the wavenumbers of the pump, signal, idler, and the SF waves. Δ k OPG ( Δ k SFG ) is the wave-vector mismatch in the OPG (SFG) process. We may engineer QPM gratings to simultaneously satisfy both phase-matching conditions. (a) Photon energy conservation conditions, (b) phase-matching conditions.

Fig. 2
Fig. 2

Diagram of the frequency-resolved cross correlator. The scan delay ensures that the pump and signal pulses temporally overlap in the Li I O 3 crystal. By replacing the Li I O 3 crystal and the silicon detector with a GaAsP photodiode, we obtain a cross correlator without frequency resolvability.

Fig. 3
Fig. 3

(a) Power spectra and (b) the pulse shape for the signal from optical parametric generation in lithium niobate waveguides with different QPM grating lengths. The photon conversion efficiencies for all these traces were 10 % except for the 6 mm long gratings for which it was only 2%. The peak of the conventional OPG products is set as the time zero for all the curves in (b). All the curves are normalized to their maxima.

Fig. 4
Fig. 4

(a) Signal power spectrum with a pump wavelength of 784.4 nm and a photon conversion efficiency of 10 % . (b) Pulse shapes of the OPG signal in different wavelength ranges with a 38 nm wide sinc 2 -shape bandpass filter. To show the correct relative power the curves in (b) are not normalized. Baselines are shifted to indicate center signal wavelength for each trace, which can be read out from the x axis of (a). On each curve, peak 1 corresponds to the conventional OPG products, and peak 2 corresponds to the cascaded OPG products.

Fig. 5
Fig. 5

(a) Signal power spectra and (b) the pulse shape for a waveguide with a 34 mm long QPM grating. In both figures, the dashed–dotted curves (1) correspond to a pump wavelength of 782.8 nm and a photon conversion efficiency of 20 % ; cascaded OPG was absent. For the solid (2), dashed (3), and dotted (4) curves, the pump wavelength was 784.4 nm , strong cascaded OPG was present, and they, respectively, correspond to a total photon conversion efficiency of 10 % , 20%, and 30%. All the curves in (a) are normalized to their maxima and the baselines are shifted for a clear comparison in their peak positions, while the curves in (b) are not normalized and hence show a correct comparison in photon conversion efficiencies.

Fig. 6
Fig. 6

Illustration of the different properties of conventional OPG and cascaded OPG. No propagation loss is considered for the pump. L 0 is the characteristic length for the SFG in cascaded OPG.

Fig. 7
Fig. 7

Pulse shapes of the signal and idler obtained by summing up the frequency-resolved cross correlation traces from a 42 mm long QPM grating at a pump power resulting in a photon conversion efficiency of 20 % . The shadowed regions under the curves correspond to the cascaded OPG products while the other regions correspond to the conventional OPG products.

Fig. 8
Fig. 8

(a) Diagram of the phase-modulated gratings. The center positions of the domains shift by an amount calculated from an optimized periodic phase function. Λ ph is the phase-modulation period. (b), (c) Simulated QPM peaks of phase-reversal gratings designed with Λ 1 = Λ OPG = 16.45 μ m , δ = 0.4 μ m , and Λ 2 = Λ 1 δ = 16.05 μ m (see text for definition of symbols). The grating duty cycle is 1 3 and the two peaks near Λ 1 and Λ 2 have the same area in the spatial-frequency domain.

Fig. 9
Fig. 9

Wavelengths of the signal from the strongest cascaded OPG in different phase-modulated gratings. δ is a parameter describing the QPM grating design, defined in the text and shown in Fig. 8. The solid line is from simulations without any adjustable parameter, and the circle symbols are from experimental results.

Metrics