Abstract

Cascaded optical parametric generation in lithium niobate waveguides involves simultaneous quasi-phase-matching of optical parametric generation and sum-frequency generation. We study details of this process in reverse-proton-exchange lithium niobate waveguides with quasi-phase-matching gratings from 6to42mm in length. We identify the cascaded products in the time domain using a frequency-resolved cross correlator and study cascaded optical parametric generation under different levels of pump depletion. With phase-modulated gratings, we demonstrate control over the wavelength of the near-transform-limited signal pulses from cascaded optical parametric generation. With its low threshold and controllable temporal properties, cascaded optical parametric generation in reverse-proton-exchange waveguides can be a promising candidate for a tunable light source.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription