Abstract

The photodamage in coherent anti-Stokes Raman scattering (CARS) imaging of spinal tissues is featured by plasma-induced myelin splitting and shockwaves. When the excitation is tuned on resonance with the symmetric CH2 stretch vibration, the average point-scanning time to cause the photodamage is reduced by half. Similar Raman resonance-enhanced photodamage is also observed for a polymer film. The light–matter energy transfer in coherent Raman processes with both plane waves and focused excitation beams is analyzed to interpret this phenomenon. Our calculation indicates that at Raman resonance, a significant vibrational absorption in the material can be stimulated by the concomitant Raman gain and Raman loss processes due to high incident-field intensities under a tight-focusing condition. As a result, while the nonlinear damage induced by multiphoton absorption can be diminished in CARS microscopy owing to the use of near-infrared picosecond pulses, the coherent Raman-induced vibrational pumping is able to enhance the photodamage by assisting plasma generation in the material.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
    [CrossRef]
  2. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
    [CrossRef]
  3. N. Dudovich and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  4. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging," Phys. Rev. Lett. 92, 220801 (2004).
    [CrossRef] [PubMed]
  5. T. W. Kee and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 29, 2701-2703 (2004).
    [CrossRef] [PubMed]
  6. T.-W. Koo, S. Chan, and A. A. Berlin, "Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering," Opt. Lett. 30, 1024-1026 (2005).
    [CrossRef] [PubMed]
  7. D. L. Marks and S. A. Boppart, "Nonlinear interferometric vibrational imaging," Phys. Rev. Lett. 92, 123905 (2004).
    [CrossRef] [PubMed]
  8. V. V. Yakovlev, "Advanced instrumentation for non-linear Raman microscopy," J. Raman Spectrosc. 34, 957-964 (2003).
    [CrossRef]
  9. L. Li, H. Wang, and J. X. Cheng, "Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in co-existing domains," Biophys. J. 89, 3480-3490 (2005).
    [CrossRef] [PubMed]
  10. E. O. Potma and X. S. Xie, "Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy," ChemPhysChem 6, 77-79 (2005).
    [CrossRef] [PubMed]
  11. G. W. H. Wurpel, H. A. Rinia, and M. Müller, "Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy," J. Microsc. 218, 37-45 (2005).
    [CrossRef] [PubMed]
  12. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of live spinal tissues," Biophys. J. 89, 581-591 (2005).
    [CrossRef] [PubMed]
  13. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
    [CrossRef] [PubMed]
  14. X. Nan, J. X. Cheng, and X. S. Xie, "Vibrational imaging of lipid droplets in live fibroblast cells using coherent anti-Stokes Raman microscopy," J. Lipid Res. 40, 2202-2208 (2003).
    [CrossRef]
  15. E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, "In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy," Anal. Chem. 78, 8036-8043 (2006).
    [CrossRef] [PubMed]
  16. A. Hopt and E. Neher, "Highly nonlinear photodamage in two-photon fluorescence microscopy," Biophys. J. 80, 2029-2036 (2001).
    [CrossRef] [PubMed]
  17. K. König, T. W. Becker, P. Fischer, I. Riemann, and K.-J. Halbhuber, "Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes," Opt. Lett. 24, 113-115 (1999).
    [CrossRef]
  18. A. Vogel, J. Noack, G. Huettmann, and G. Paltauf, "Femtosecond-laser-produced low-density plasmas in transparent biological media: a tool for the creation of chemical, thermal, and thermomechanical effects below the optical breakdown threshold," Proc. SPIE 4633A, 1-15 (2002).
  19. Y. Fu, H. Wang, R. Shi, and J. X. Cheng, "Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy," Opt. Express 14, 3942-3951 (2006).
    [CrossRef] [PubMed]
  20. R. J. H. Clark and R. E. Hester, Advances in Non-Linear Spectroscopy (Wiley, 1988), Vol. 15.
  21. J. S. Gomez, "Coherent Raman spectroscopy," in Modern Techniques in Raman Spectroscopy, J.J.Laserna, ed. (Wiley, 1996), pp. 309-342.
  22. Y. R. Shen, The Principle of Non-Linear Optics (Wiley, 1984).
  23. S. A. Akhmanov, "Coherent active spectroscopy of combinatorial (Raman) scattering with tunable oscillators: comparison with the spontaneous scattering technique," in Nonlinear Spectroscopy, N.Bloembergen, ed. (North-Holland, 1977), pp. 217-254.
  24. G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, 1981).
  25. R. W. Hellwarth, "Third order nonlinear susceptibility of liquids and solids," Prog. Quantum Electron. 5, 1-68 (1977).
    [CrossRef]
  26. M. D. Levenson and J. J. Song, "Coherent Raman spectroscopy," in Coherent Nonlinear Optics (Topics in Current Physics 21), M. S. Feld and V. S. Letokhov, eds. (Springer-Verlag, 1980), pp. 293-373.
  27. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, 1990).
  28. C. C. Shang and H. Hsu, IEEE J. Quantum Electron. QE-23, 117-119 (1987).
  29. P. Morell and R. H. Quarles, "Myelin formation, structure, and biochemistry," in Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 5th ed., G. J. Siegel, B. W. Agranoff, R. W. Alberts, and P. B. Molinoff, eds. (Lippincott, 1999).
  30. P. N. Prasad, Introduction to Biophotonics (Wiley Interscience, 2003), pp. 168-175.
  31. J. Diels and W. Rudolph, "Generation of extreme wavelengths," in Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 1996), pp. 472-475.
  32. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
    [CrossRef]
  33. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, 1995), p. 542.
  34. H. Lotem, J. R. T. Lynch, and N. Bloembergen, "Interference between Raman resonances in four-wave difference mixing," Phys. Rev. A 14, 1748-1755 (1976).
    [CrossRef]
  35. W. Zhao, H. Li, R. West, and J. C. Wright, "Measurement of the third-order nonlinear susceptibility in a representative soluble polymer with acetylenic linkages," Chem. Phys. Lett. 281, 105-110 (1997).
    [CrossRef]
  36. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
    [CrossRef]
  37. J. X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
    [CrossRef]
  38. E. Plönjes, P. Palm, J. W. Richa, I. V. Adamovich, and W. Urban, "Electron-mediated vibration-electronic (V-E) energy transfer in optically pumped plasmas," Chem. Phys. 279, 43-54 (2002).
    [CrossRef]
  39. W. Lee, K. Frederickson, P. Palm, I. Adamovich, J. W. Rich, and W. Lempert, "Mitigation of oxygen attachment in high pressure air plasmas by vibrational excitation," in 35th AIAA Plasmadynamics and Lasers Conference (AIAA, 2004), paper AIAA 2257-2004.
  40. C. E. Treanor, J. W. Rich, and R. G. Rehm, "Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions," J. Chem. Phys. 48, 1798-1807 (1968).
    [CrossRef]
  41. S. J. Singer and G. L. Nicolson, "Fluid mosaic model of structure of cell-membranes," Science 175, 720-731 (1972).
    [CrossRef] [PubMed]
  42. K. Ravichandran, M. Yorgancioglu, and T. R. Fletcher, "A simple method for quantitative comparisons of mode specific chemistry using stimulated Raman excitation," J. Chem. Phys. 101, 3406-3409 (1994).
    [CrossRef]
  43. P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain tissue," Proc. SPIE 1888, 454-465 (1993).
    [CrossRef]
  44. P. T. C. So, H. Kim, and I. E. Kochevar, "Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures," Opt. Express 3, 339-350 (1998).
    [CrossRef] [PubMed]
  45. J. F. Nagle, "Area/lipid of bilayers from NMR," Biophys. J. 64, 1476-1481 (1993).
    [CrossRef] [PubMed]
  46. U. Banin, A. Bartana, S. Ruhman, and R. Kosloff, "Impulsive excitation of coherent vibrational motion ground surface dynamics induced by intense short pulses," J. Chem. Phys. 101, 8461-8481 (1994).
    [CrossRef]
  47. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
    [CrossRef]

2006 (2)

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, "In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy," Anal. Chem. 78, 8036-8043 (2006).
[CrossRef] [PubMed]

Y. Fu, H. Wang, R. Shi, and J. X. Cheng, "Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy," Opt. Express 14, 3942-3951 (2006).
[CrossRef] [PubMed]

2005 (6)

L. Li, H. Wang, and J. X. Cheng, "Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in co-existing domains," Biophys. J. 89, 3480-3490 (2005).
[CrossRef] [PubMed]

E. O. Potma and X. S. Xie, "Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy," ChemPhysChem 6, 77-79 (2005).
[CrossRef] [PubMed]

G. W. H. Wurpel, H. A. Rinia, and M. Müller, "Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy," J. Microsc. 218, 37-45 (2005).
[CrossRef] [PubMed]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of live spinal tissues," Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

T.-W. Koo, S. Chan, and A. A. Berlin, "Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering," Opt. Lett. 30, 1024-1026 (2005).
[CrossRef] [PubMed]

2004 (4)

T. W. Kee and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 29, 2701-2703 (2004).
[CrossRef] [PubMed]

D. L. Marks and S. A. Boppart, "Nonlinear interferometric vibrational imaging," Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging," Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

2003 (2)

V. V. Yakovlev, "Advanced instrumentation for non-linear Raman microscopy," J. Raman Spectrosc. 34, 957-964 (2003).
[CrossRef]

X. Nan, J. X. Cheng, and X. S. Xie, "Vibrational imaging of lipid droplets in live fibroblast cells using coherent anti-Stokes Raman microscopy," J. Lipid Res. 40, 2202-2208 (2003).
[CrossRef]

2002 (4)

N. Dudovich and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

J. X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

E. Plönjes, P. Palm, J. W. Richa, I. V. Adamovich, and W. Urban, "Electron-mediated vibration-electronic (V-E) energy transfer in optically pumped plasmas," Chem. Phys. 279, 43-54 (2002).
[CrossRef]

A. Vogel, J. Noack, G. Huettmann, and G. Paltauf, "Femtosecond-laser-produced low-density plasmas in transparent biological media: a tool for the creation of chemical, thermal, and thermomechanical effects below the optical breakdown threshold," Proc. SPIE 4633A, 1-15 (2002).

2001 (2)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

A. Hopt and E. Neher, "Highly nonlinear photodamage in two-photon fluorescence microscopy," Biophys. J. 80, 2029-2036 (2001).
[CrossRef] [PubMed]

1999 (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

K. König, T. W. Becker, P. Fischer, I. Riemann, and K.-J. Halbhuber, "Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes," Opt. Lett. 24, 113-115 (1999).
[CrossRef]

1998 (1)

1997 (1)

W. Zhao, H. Li, R. West, and J. C. Wright, "Measurement of the third-order nonlinear susceptibility in a representative soluble polymer with acetylenic linkages," Chem. Phys. Lett. 281, 105-110 (1997).
[CrossRef]

1994 (2)

K. Ravichandran, M. Yorgancioglu, and T. R. Fletcher, "A simple method for quantitative comparisons of mode specific chemistry using stimulated Raman excitation," J. Chem. Phys. 101, 3406-3409 (1994).
[CrossRef]

U. Banin, A. Bartana, S. Ruhman, and R. Kosloff, "Impulsive excitation of coherent vibrational motion ground surface dynamics induced by intense short pulses," J. Chem. Phys. 101, 8461-8481 (1994).
[CrossRef]

1993 (2)

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain tissue," Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

J. F. Nagle, "Area/lipid of bilayers from NMR," Biophys. J. 64, 1476-1481 (1993).
[CrossRef] [PubMed]

1987 (1)

C. C. Shang and H. Hsu, IEEE J. Quantum Electron. QE-23, 117-119 (1987).

1977 (1)

R. W. Hellwarth, "Third order nonlinear susceptibility of liquids and solids," Prog. Quantum Electron. 5, 1-68 (1977).
[CrossRef]

1976 (1)

H. Lotem, J. R. T. Lynch, and N. Bloembergen, "Interference between Raman resonances in four-wave difference mixing," Phys. Rev. A 14, 1748-1755 (1976).
[CrossRef]

1972 (1)

S. J. Singer and G. L. Nicolson, "Fluid mosaic model of structure of cell-membranes," Science 175, 720-731 (1972).
[CrossRef] [PubMed]

1968 (2)

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

C. E. Treanor, J. W. Rich, and R. G. Rehm, "Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions," J. Chem. Phys. 48, 1798-1807 (1968).
[CrossRef]

1959 (1)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Adamovich, I.

W. Lee, K. Frederickson, P. Palm, I. Adamovich, J. W. Rich, and W. Lempert, "Mitigation of oxygen attachment in high pressure air plasmas by vibrational excitation," in 35th AIAA Plasmadynamics and Lasers Conference (AIAA, 2004), paper AIAA 2257-2004.

Adamovich, I. V.

E. Plönjes, P. Palm, J. W. Richa, I. V. Adamovich, and W. Urban, "Electron-mediated vibration-electronic (V-E) energy transfer in optically pumped plasmas," Chem. Phys. 279, 43-54 (2002).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, "Coherent active spectroscopy of combinatorial (Raman) scattering with tunable oscillators: comparison with the spontaneous scattering technique," in Nonlinear Spectroscopy, N.Bloembergen, ed. (North-Holland, 1977), pp. 217-254.

Banin, U.

U. Banin, A. Bartana, S. Ruhman, and R. Kosloff, "Impulsive excitation of coherent vibrational motion ground surface dynamics induced by intense short pulses," J. Chem. Phys. 101, 8461-8481 (1994).
[CrossRef]

Bartana, A.

U. Banin, A. Bartana, S. Ruhman, and R. Kosloff, "Impulsive excitation of coherent vibrational motion ground surface dynamics induced by intense short pulses," J. Chem. Phys. 101, 8461-8481 (1994).
[CrossRef]

Becker, T. W.

Berlin, A. A.

Bloembergen, N.

H. Lotem, J. R. T. Lynch, and N. Bloembergen, "Interference between Raman resonances in four-wave difference mixing," Phys. Rev. A 14, 1748-1755 (1976).
[CrossRef]

Book, L. D.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Boppart, S. A.

D. L. Marks and S. A. Boppart, "Nonlinear interferometric vibrational imaging," Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Butcher, P. N.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, 1990).

Chan, S.

Cheng, J. X.

Y. Fu, H. Wang, R. Shi, and J. X. Cheng, "Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy," Opt. Express 14, 3942-3951 (2006).
[CrossRef] [PubMed]

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, "In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy," Anal. Chem. 78, 8036-8043 (2006).
[CrossRef] [PubMed]

L. Li, H. Wang, and J. X. Cheng, "Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in co-existing domains," Biophys. J. 89, 3480-3490 (2005).
[CrossRef] [PubMed]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of live spinal tissues," Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

X. Nan, J. X. Cheng, and X. S. Xie, "Vibrational imaging of lipid droplets in live fibroblast cells using coherent anti-Stokes Raman microscopy," J. Lipid Res. 40, 2202-2208 (2003).
[CrossRef]

J. X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Cicerone, M. T.

Clark, R. J. H.

R. J. H. Clark and R. E. Hester, Advances in Non-Linear Spectroscopy (Wiley, 1988), Vol. 15.

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Cotter, D.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, 1990).

Delpy, D. T.

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain tissue," Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

Diels, J.

J. Diels and W. Rudolph, "Generation of extreme wavelengths," in Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 1996), pp. 472-475.

Dudovich, N.

N. Dudovich and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Eesley, G. L.

G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, 1981).

Essenpreis, M.

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain tissue," Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Fischer, P.

Fletcher, T. R.

K. Ravichandran, M. Yorgancioglu, and T. R. Fletcher, "A simple method for quantitative comparisons of mode specific chemistry using stimulated Raman excitation," J. Chem. Phys. 101, 3406-3409 (1994).
[CrossRef]

Frederickson, K.

W. Lee, K. Frederickson, P. Palm, I. Adamovich, J. W. Rich, and W. Lempert, "Mitigation of oxygen attachment in high pressure air plasmas by vibrational excitation," in 35th AIAA Plasmadynamics and Lasers Conference (AIAA, 2004), paper AIAA 2257-2004.

Fu, Y.

Y. Fu, H. Wang, R. Shi, and J. X. Cheng, "Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy," Opt. Express 14, 3942-3951 (2006).
[CrossRef] [PubMed]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of live spinal tissues," Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

Gomez, J. S.

J. S. Gomez, "Coherent Raman spectroscopy," in Modern Techniques in Raman Spectroscopy, J.J.Laserna, ed. (Wiley, 1996), pp. 309-342.

Halbhuber, K.-J.

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging," Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Hayazawa, N.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging," Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Hellwarth, R. W.

R. W. Hellwarth, "Third order nonlinear susceptibility of liquids and solids," Prog. Quantum Electron. 5, 1-68 (1977).
[CrossRef]

Hester, R. E.

R. J. H. Clark and R. E. Hester, Advances in Non-Linear Spectroscopy (Wiley, 1988), Vol. 15.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Hopt, A.

A. Hopt and E. Neher, "Highly nonlinear photodamage in two-photon fluorescence microscopy," Biophys. J. 80, 2029-2036 (2001).
[CrossRef] [PubMed]

Hsu, H.

C. C. Shang and H. Hsu, IEEE J. Quantum Electron. QE-23, 117-119 (1987).

Huettmann, G.

A. Vogel, J. Noack, G. Huettmann, and G. Paltauf, "Femtosecond-laser-produced low-density plasmas in transparent biological media: a tool for the creation of chemical, thermal, and thermomechanical effects below the optical breakdown threshold," Proc. SPIE 4633A, 1-15 (2002).

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging," Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging," Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Kang, E.

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, "In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy," Anal. Chem. 78, 8036-8043 (2006).
[CrossRef] [PubMed]

Kawata, S.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging," Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Kee, T. W.

Kim, H.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Kochevar, I. E.

König, K.

Koo, T.-W.

Kosloff, R.

U. Banin, A. Bartana, S. Ruhman, and R. Kosloff, "Impulsive excitation of coherent vibrational motion ground surface dynamics induced by intense short pulses," J. Chem. Phys. 101, 8461-8481 (1994).
[CrossRef]

Kwon, I. K.

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, "In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy," Anal. Chem. 78, 8036-8043 (2006).
[CrossRef] [PubMed]

Lee, W.

W. Lee, K. Frederickson, P. Palm, I. Adamovich, J. W. Rich, and W. Lempert, "Mitigation of oxygen attachment in high pressure air plasmas by vibrational excitation," in 35th AIAA Plasmadynamics and Lasers Conference (AIAA, 2004), paper AIAA 2257-2004.

Lempert, W.

W. Lee, K. Frederickson, P. Palm, I. Adamovich, J. W. Rich, and W. Lempert, "Mitigation of oxygen attachment in high pressure air plasmas by vibrational excitation," in 35th AIAA Plasmadynamics and Lasers Conference (AIAA, 2004), paper AIAA 2257-2004.

Levenson, M. D.

M. D. Levenson and J. J. Song, "Coherent Raman spectroscopy," in Coherent Nonlinear Optics (Topics in Current Physics 21), M. S. Feld and V. S. Letokhov, eds. (Springer-Verlag, 1980), pp. 293-373.

Li, H.

W. Zhao, H. Li, R. West, and J. C. Wright, "Measurement of the third-order nonlinear susceptibility in a representative soluble polymer with acetylenic linkages," Chem. Phys. Lett. 281, 105-110 (1997).
[CrossRef]

Li, L.

L. Li, H. Wang, and J. X. Cheng, "Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in co-existing domains," Biophys. J. 89, 3480-3490 (2005).
[CrossRef] [PubMed]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Lotem, H.

H. Lotem, J. R. T. Lynch, and N. Bloembergen, "Interference between Raman resonances in four-wave difference mixing," Phys. Rev. A 14, 1748-1755 (1976).
[CrossRef]

Lynch, J. R. T.

H. Lotem, J. R. T. Lynch, and N. Bloembergen, "Interference between Raman resonances in four-wave difference mixing," Phys. Rev. A 14, 1748-1755 (1976).
[CrossRef]

Marks, D. L.

D. L. Marks and S. A. Boppart, "Nonlinear interferometric vibrational imaging," Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

Morell, P.

P. Morell and R. H. Quarles, "Myelin formation, structure, and biochemistry," in Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 5th ed., G. J. Siegel, B. W. Agranoff, R. W. Alberts, and P. B. Molinoff, eds. (Lippincott, 1999).

Mukamel, S.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, 1995), p. 542.

Müller, M.

G. W. H. Wurpel, H. A. Rinia, and M. Müller, "Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy," J. Microsc. 218, 37-45 (2005).
[CrossRef] [PubMed]

Nagle, J. F.

J. F. Nagle, "Area/lipid of bilayers from NMR," Biophys. J. 64, 1476-1481 (1993).
[CrossRef] [PubMed]

Nan, X.

X. Nan, J. X. Cheng, and X. S. Xie, "Vibrational imaging of lipid droplets in live fibroblast cells using coherent anti-Stokes Raman microscopy," J. Lipid Res. 40, 2202-2208 (2003).
[CrossRef]

Neher, E.

A. Hopt and E. Neher, "Highly nonlinear photodamage in two-photon fluorescence microscopy," Biophys. J. 80, 2029-2036 (2001).
[CrossRef] [PubMed]

Nicolson, G. L.

S. J. Singer and G. L. Nicolson, "Fluid mosaic model of structure of cell-membranes," Science 175, 720-731 (1972).
[CrossRef] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Huettmann, and G. Paltauf, "Femtosecond-laser-produced low-density plasmas in transparent biological media: a tool for the creation of chemical, thermal, and thermomechanical effects below the optical breakdown threshold," Proc. SPIE 4633A, 1-15 (2002).

Palm, P.

E. Plönjes, P. Palm, J. W. Richa, I. V. Adamovich, and W. Urban, "Electron-mediated vibration-electronic (V-E) energy transfer in optically pumped plasmas," Chem. Phys. 279, 43-54 (2002).
[CrossRef]

W. Lee, K. Frederickson, P. Palm, I. Adamovich, J. W. Rich, and W. Lempert, "Mitigation of oxygen attachment in high pressure air plasmas by vibrational excitation," in 35th AIAA Plasmadynamics and Lasers Conference (AIAA, 2004), paper AIAA 2257-2004.

Paltauf, G.

A. Vogel, J. Noack, G. Huettmann, and G. Paltauf, "Femtosecond-laser-produced low-density plasmas in transparent biological media: a tool for the creation of chemical, thermal, and thermomechanical effects below the optical breakdown threshold," Proc. SPIE 4633A, 1-15 (2002).

Park, K.

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, "In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy," Anal. Chem. 78, 8036-8043 (2006).
[CrossRef] [PubMed]

Plönjes, E.

E. Plönjes, P. Palm, J. W. Richa, I. V. Adamovich, and W. Urban, "Electron-mediated vibration-electronic (V-E) energy transfer in optically pumped plasmas," Chem. Phys. 279, 43-54 (2002).
[CrossRef]

Potma, E. O.

E. O. Potma and X. S. Xie, "Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy," ChemPhysChem 6, 77-79 (2005).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Prasad, P. N.

P. N. Prasad, Introduction to Biophotonics (Wiley Interscience, 2003), pp. 168-175.

Puoris'haag, M.

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Quarles, R. H.

P. Morell and R. H. Quarles, "Myelin formation, structure, and biochemistry," in Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 5th ed., G. J. Siegel, B. W. Agranoff, R. W. Alberts, and P. B. Molinoff, eds. (Lippincott, 1999).

Ravichandran, K.

K. Ravichandran, M. Yorgancioglu, and T. R. Fletcher, "A simple method for quantitative comparisons of mode specific chemistry using stimulated Raman excitation," J. Chem. Phys. 101, 3406-3409 (1994).
[CrossRef]

Rehm, R. G.

C. E. Treanor, J. W. Rich, and R. G. Rehm, "Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions," J. Chem. Phys. 48, 1798-1807 (1968).
[CrossRef]

Rich, J. W.

C. E. Treanor, J. W. Rich, and R. G. Rehm, "Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions," J. Chem. Phys. 48, 1798-1807 (1968).
[CrossRef]

W. Lee, K. Frederickson, P. Palm, I. Adamovich, J. W. Rich, and W. Lempert, "Mitigation of oxygen attachment in high pressure air plasmas by vibrational excitation," in 35th AIAA Plasmadynamics and Lasers Conference (AIAA, 2004), paper AIAA 2257-2004.

Richa, J. W.

E. Plönjes, P. Palm, J. W. Richa, I. V. Adamovich, and W. Urban, "Electron-mediated vibration-electronic (V-E) energy transfer in optically pumped plasmas," Chem. Phys. 279, 43-54 (2002).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Riemann, I.

Rinia, H. A.

G. W. H. Wurpel, H. A. Rinia, and M. Müller, "Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy," J. Microsc. 218, 37-45 (2005).
[CrossRef] [PubMed]

Robinson, J.

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, "In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy," Anal. Chem. 78, 8036-8043 (2006).
[CrossRef] [PubMed]

Rudolph, W.

J. Diels and W. Rudolph, "Generation of extreme wavelengths," in Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 1996), pp. 472-475.

Ruhman, S.

U. Banin, A. Bartana, S. Ruhman, and R. Kosloff, "Impulsive excitation of coherent vibrational motion ground surface dynamics induced by intense short pulses," J. Chem. Phys. 101, 8461-8481 (1994).
[CrossRef]

Shang, C. C.

C. C. Shang and H. Hsu, IEEE J. Quantum Electron. QE-23, 117-119 (1987).

Shen, Y. R.

Y. R. Shen, The Principle of Non-Linear Optics (Wiley, 1984).

Shi, R.

Y. Fu, H. Wang, R. Shi, and J. X. Cheng, "Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy," Opt. Express 14, 3942-3951 (2006).
[CrossRef] [PubMed]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of live spinal tissues," Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

Silberberg, Y.

N. Dudovich and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Singer, S. J.

S. J. Singer and G. L. Nicolson, "Fluid mosaic model of structure of cell-membranes," Science 175, 720-731 (1972).
[CrossRef] [PubMed]

So, P. T. C.

Song, J. J.

M. D. Levenson and J. J. Song, "Coherent Raman spectroscopy," in Coherent Nonlinear Optics (Topics in Current Physics 21), M. S. Feld and V. S. Letokhov, eds. (Springer-Verlag, 1980), pp. 293-373.

Treanor, C. E.

C. E. Treanor, J. W. Rich, and R. G. Rehm, "Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions," J. Chem. Phys. 48, 1798-1807 (1968).
[CrossRef]

Urban, W.

E. Plönjes, P. Palm, J. W. Richa, I. V. Adamovich, and W. Urban, "Electron-mediated vibration-electronic (V-E) energy transfer in optically pumped plasmas," Chem. Phys. 279, 43-54 (2002).
[CrossRef]

van der Zee, P.

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain tissue," Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Huettmann, and G. Paltauf, "Femtosecond-laser-produced low-density plasmas in transparent biological media: a tool for the creation of chemical, thermal, and thermomechanical effects below the optical breakdown threshold," Proc. SPIE 4633A, 1-15 (2002).

Volkmer, A.

J. X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

Wang, H.

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, "In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy," Anal. Chem. 78, 8036-8043 (2006).
[CrossRef] [PubMed]

Y. Fu, H. Wang, R. Shi, and J. X. Cheng, "Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy," Opt. Express 14, 3942-3951 (2006).
[CrossRef] [PubMed]

L. Li, H. Wang, and J. X. Cheng, "Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in co-existing domains," Biophys. J. 89, 3480-3490 (2005).
[CrossRef] [PubMed]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of live spinal tissues," Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

West, R.

W. Zhao, H. Li, R. West, and J. C. Wright, "Measurement of the third-order nonlinear susceptibility in a representative soluble polymer with acetylenic linkages," Chem. Phys. Lett. 281, 105-110 (1997).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Wright, J. C.

W. Zhao, H. Li, R. West, and J. C. Wright, "Measurement of the third-order nonlinear susceptibility in a representative soluble polymer with acetylenic linkages," Chem. Phys. Lett. 281, 105-110 (1997).
[CrossRef]

Wurpel, G. W. H.

G. W. H. Wurpel, H. A. Rinia, and M. Müller, "Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy," J. Microsc. 218, 37-45 (2005).
[CrossRef] [PubMed]

Xie, X. S.

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

E. O. Potma and X. S. Xie, "Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy," ChemPhysChem 6, 77-79 (2005).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

X. Nan, J. X. Cheng, and X. S. Xie, "Vibrational imaging of lipid droplets in live fibroblast cells using coherent anti-Stokes Raman microscopy," J. Lipid Res. 40, 2202-2208 (2003).
[CrossRef]

J. X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Yakovlev, V. V.

V. V. Yakovlev, "Advanced instrumentation for non-linear Raman microscopy," J. Raman Spectrosc. 34, 957-964 (2003).
[CrossRef]

Yorgancioglu, M.

K. Ravichandran, M. Yorgancioglu, and T. R. Fletcher, "A simple method for quantitative comparisons of mode specific chemistry using stimulated Raman excitation," J. Chem. Phys. 101, 3406-3409 (1994).
[CrossRef]

Zhao, W.

W. Zhao, H. Li, R. West, and J. C. Wright, "Measurement of the third-order nonlinear susceptibility in a representative soluble polymer with acetylenic linkages," Chem. Phys. Lett. 281, 105-110 (1997).
[CrossRef]

Zickmund, P.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of live spinal tissues," Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Anal. Chem. (1)

E. Kang, H. Wang, I. K. Kwon, J. Robinson, K. Park, and J. X. Cheng, "In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy," Anal. Chem. 78, 8036-8043 (2006).
[CrossRef] [PubMed]

Biophys. J. (4)

A. Hopt and E. Neher, "Highly nonlinear photodamage in two-photon fluorescence microscopy," Biophys. J. 80, 2029-2036 (2001).
[CrossRef] [PubMed]

L. Li, H. Wang, and J. X. Cheng, "Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in co-existing domains," Biophys. J. 89, 3480-3490 (2005).
[CrossRef] [PubMed]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of live spinal tissues," Biophys. J. 89, 581-591 (2005).
[CrossRef] [PubMed]

J. F. Nagle, "Area/lipid of bilayers from NMR," Biophys. J. 64, 1476-1481 (1993).
[CrossRef] [PubMed]

Chem. Phys. (1)

E. Plönjes, P. Palm, J. W. Richa, I. V. Adamovich, and W. Urban, "Electron-mediated vibration-electronic (V-E) energy transfer in optically pumped plasmas," Chem. Phys. 279, 43-54 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

W. Zhao, H. Li, R. West, and J. C. Wright, "Measurement of the third-order nonlinear susceptibility in a representative soluble polymer with acetylenic linkages," Chem. Phys. Lett. 281, 105-110 (1997).
[CrossRef]

ChemPhysChem (1)

E. O. Potma and X. S. Xie, "Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy," ChemPhysChem 6, 77-79 (2005).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

C. C. Shang and H. Hsu, IEEE J. Quantum Electron. QE-23, 117-119 (1987).

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

J. Chem. Phys. (3)

U. Banin, A. Bartana, S. Ruhman, and R. Kosloff, "Impulsive excitation of coherent vibrational motion ground surface dynamics induced by intense short pulses," J. Chem. Phys. 101, 8461-8481 (1994).
[CrossRef]

K. Ravichandran, M. Yorgancioglu, and T. R. Fletcher, "A simple method for quantitative comparisons of mode specific chemistry using stimulated Raman excitation," J. Chem. Phys. 101, 3406-3409 (1994).
[CrossRef]

C. E. Treanor, J. W. Rich, and R. G. Rehm, "Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions," J. Chem. Phys. 48, 1798-1807 (1968).
[CrossRef]

J. Lipid Res. (1)

X. Nan, J. X. Cheng, and X. S. Xie, "Vibrational imaging of lipid droplets in live fibroblast cells using coherent anti-Stokes Raman microscopy," J. Lipid Res. 40, 2202-2208 (2003).
[CrossRef]

J. Microsc. (1)

G. W. H. Wurpel, H. A. Rinia, and M. Müller, "Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy," J. Microsc. 218, 37-45 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

J. X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001).
[CrossRef]

J. Raman Spectrosc. (1)

V. V. Yakovlev, "Advanced instrumentation for non-linear Raman microscopy," J. Raman Spectrosc. 34, 957-964 (2003).
[CrossRef]

Nature (1)

N. Dudovich and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (1)

H. Lotem, J. R. T. Lynch, and N. Bloembergen, "Interference between Raman resonances in four-wave difference mixing," Phys. Rev. A 14, 1748-1755 (1976).
[CrossRef]

Phys. Rev. Lett. (3)

D. L. Marks and S. A. Boppart, "Nonlinear interferometric vibrational imaging," Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging," Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. A (1)

B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Proc. SPIE (2)

P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain tissue," Proc. SPIE 1888, 454-465 (1993).
[CrossRef]

A. Vogel, J. Noack, G. Huettmann, and G. Paltauf, "Femtosecond-laser-produced low-density plasmas in transparent biological media: a tool for the creation of chemical, thermal, and thermomechanical effects below the optical breakdown threshold," Proc. SPIE 4633A, 1-15 (2002).

Prog. Quantum Electron. (1)

R. W. Hellwarth, "Third order nonlinear susceptibility of liquids and solids," Prog. Quantum Electron. 5, 1-68 (1977).
[CrossRef]

Science (1)

S. J. Singer and G. L. Nicolson, "Fluid mosaic model of structure of cell-membranes," Science 175, 720-731 (1972).
[CrossRef] [PubMed]

Other (12)

W. Lee, K. Frederickson, P. Palm, I. Adamovich, J. W. Rich, and W. Lempert, "Mitigation of oxygen attachment in high pressure air plasmas by vibrational excitation," in 35th AIAA Plasmadynamics and Lasers Conference (AIAA, 2004), paper AIAA 2257-2004.

M. D. Levenson and J. J. Song, "Coherent Raman spectroscopy," in Coherent Nonlinear Optics (Topics in Current Physics 21), M. S. Feld and V. S. Letokhov, eds. (Springer-Verlag, 1980), pp. 293-373.

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, 1990).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, 1995), p. 542.

P. Morell and R. H. Quarles, "Myelin formation, structure, and biochemistry," in Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 5th ed., G. J. Siegel, B. W. Agranoff, R. W. Alberts, and P. B. Molinoff, eds. (Lippincott, 1999).

P. N. Prasad, Introduction to Biophotonics (Wiley Interscience, 2003), pp. 168-175.

J. Diels and W. Rudolph, "Generation of extreme wavelengths," in Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 1996), pp. 472-475.

R. J. H. Clark and R. E. Hester, Advances in Non-Linear Spectroscopy (Wiley, 1988), Vol. 15.

J. S. Gomez, "Coherent Raman spectroscopy," in Modern Techniques in Raman Spectroscopy, J.J.Laserna, ed. (Wiley, 1996), pp. 309-342.

Y. R. Shen, The Principle of Non-Linear Optics (Wiley, 1984).

S. A. Akhmanov, "Coherent active spectroscopy of combinatorial (Raman) scattering with tunable oscillators: comparison with the spontaneous scattering technique," in Nonlinear Spectroscopy, N.Bloembergen, ed. (North-Holland, 1977), pp. 217-254.

G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Photodamage induced in CARS imaging of myelin sheath. (a) CARS image of a nondamaged myelinated axon. Laser repetition rate, 7.8 MHz ; average pump beam power, 6.48 mW ; average Stokes beam power, 2.52 mW . The corresponding peak power is 415 and 108 W for the pump and Stokes beams, respectively. Bar = 5 μ m . (b) CARS image of the same axon after photodamage induced by point scanning. The damage tears apart the myelin at the laser focus (circled area), (c) Typical point-scan trace. The CARS signal drops when photodamage happens. Int., intensity.

Fig. 2
Fig. 2

Raman shift dependence of the scanning time to cause photodamage in myelin sheath. (a) E-CARS spectrum of a single-axonal myelin sheath measured by manually tuning the Stokes laser wavelength. The spectrum is adapted from a previous paper.[12] The peak at 2840 cm 1 is from the symmetric CH 2 stretch vibration, (b) Average point-scanning time needed to induce photodamage versus the Raman shift. The repetition rate is 1.3 MHz . Pump beam, 14225 cm 1 ; pulse peak power, 338 W ; average power, 1.10 mW . The Stokes beam frequency is tuned to generate different Raman shifts. Stokes pulse peak power, 202 W ; average power, 0.66 mW . The error bar represents the standard deviation from 10 independent measurements. Int., intensity.

Fig. 3
Fig. 3

Raman shift dependence of the point-scanning time for causing photodamage in a PEVA [poly(ethyl-co-vinyl acetate)] film, (a) F-CARS spectrum of a film of PEVA ( 40 wt . % vinyl acetate) adapted from a recent paper.[15] (b) Average point-scanning time needed to induce photodamage versus the Raman shift for PEVA. The repetition rate is 3.9 MHz . Pump beam, 14268 cm 1 ; pulse peak power, 406 W ; average power, 3.96 mW . The Stokes beam frequency is tuned to generate different Raman shifts. Stokes pulse peak power, 101 W ; average power, 0.98 mW . The error bar represents the standard deviation from 10 independent measurements.

Fig. 4
Fig. 4

Calculated power absorption percentage versus N.A. of the focusing lens for a bulk sample and a 2 μ m diameter sphere sample. Pump laser wavelength, 703 nm , 0.85 nJ , 2.0 ps ; Stokes laser wavelength, 878 nm , 0.51 nJ , 3.0 ps ; χ n r ( 3 ) = 1.96 × 10 22 m 2 V 2 ; χ r ( 3 ) = 8.76 × 10 22 m 2 V 2 .

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

E ( t , r ) = 1 2 ( E ̃ ( r ) e i ω t + c.c. ) .
2 E ̃ ( r ) = ( ω 2 c 2 ) E ̃ ( r ) + ω 2 μ 0 P ( r ) ,
P ( r ) = ϵ 0 χ ( 1 ) E ̃ ( r ) + P 3 ( r ) .
E ̃ ( r ) = E ( r ) e i k z ,
( k 2 E 2 i k E z 2 E z 2 ) e i k z ( 2 E x 2 + 2 E y 2 ) e i k z = k 2 E e i k z + ω 2 μ 0 P ( 3 ) .
E z = i ω 2 c n P ( 3 ) e i k z + i 2 k ( 2 E x 2 + 2 E y 2 + 2 E z 2 ) .
χ r , c a r s ( 3 ) = χ r , c s r s ( 3 ) * = 2 χ r , s r l ( 3 ) = 2 χ r , s r g ( 3 ) * = χ r ( 3 ) .
χ r ( 3 ) = N A δ i Γ ,
Δ I t o t a l ( L ) I t o t a l ( 0 ) = ω 1 ω 2 c I 10 I 20 I 10 + I 20 [ ω a s c n 2 n a s κ 2 I 10 L 2 ω s c n 1 n s κ 2 I 20 L 2 2 κ L ] .
Δ I t o t a l ( L ) I t o t a l ( 0 ) = 3.37 × 10 6 6.40 × 10 7 7.54 × 10 4 7.54 × 10 4 .
E x ( ρ , ϕ , z ) = i k f exp ( i k f ) 2 ( I 00 + I 02 cos 2 ϕ ) ,
I 0 m = 0 α max E i n c ( α ) sin α cos α g m ( α ) J m ( k ρ sin α ) exp ( i k z cos α ) d x ,
E i n c ( α ) = E 0 exp ( f 2 sin 2 α w 0 2 ) ,
P ( 3 ) ( ω 1 ) = 6 ( χ n r ( 3 ) + χ r , s r l ( 3 ) ) E 2 2 E 1 e i k 1 z ,
P ( 3 ) ( ω 2 ) = 6 ( χ n r ( 3 ) + χ r , s r g ( 3 ) ) E 1 2 E 2 e i k 2 z .
E ( r , ϕ , z 0 ) = E ( r , ϕ , z 0 ) + z 0 z 0 E z ( r , ϕ , z ) d z ,
E a s z = i ω a s 8 c n a s 3 ( χ n r ( 3 ) + χ r , c a r s ( 3 ) ) E 1 2 E 2 * ,
E s z = i ω s 8 c n s 3 ( χ n r ( 3 ) + χ r , c s r s ( 3 ) ) E 2 2 E 1 * ,
E 1 z = i ω 1 8 c n 1 [ ( 6 χ n r ( 3 ) + 3 χ r , c a r s ( 3 ) * ) E 1 * E 2 E a s + 3 χ n r ( 3 ) E 2 2 E s * + 6 ( χ n r ( 3 ) + χ r , s r l ( 3 ) ) E 2 2 E 1 ] ,
E 2 z = i ω 2 8 c n 2 [ 3 χ n r ( 3 ) E 1 2 E a s * + ( 6 χ n r ( 3 ) + 3 χ r , c s r s ( 3 ) * ) E 1 E 2 * E s + 6 ( χ n r ( 3 ) + χ r , s r g ( 3 ) ) E 1 2 E 2 ] .
d I m d z = ϵ 0 c n m Re ( E m * d E m d z ) ,
d I a s d z = 3 ϵ 0 ω a s 8 [ Im ( χ n r ( 3 ) E 1 2 E 2 * E a s * ) + Im ( χ r ( 3 ) E 1 2 E 2 * E a s * ) ] ,
d I s d z = 3 ϵ 0 ω s 8 [ Im ( χ n r ( 3 ) E 1 * E 2 2 E s * ) + Im ( x r ( 3 ) * E 1 * E 2 2 E s * ) ] ,
d I 1 d z = 3 ϵ 0 ω 1 8 [ 2 Im ( χ n r ( 3 ) E 1 2 E 2 * E a s * ) Im ( χ r ( 3 ) E 1 2 E 2 * E a s * ) + Im ( χ n r ( 3 ) E 1 * E 2 2 E s * ) + Im ( χ r ( 3 ) E 1 2 E 2 2 ) ] ,
d I 2 d z = 3 ϵ 0 ω 2 8 [ 2 Im ( χ n r ( 3 ) E 1 * E 2 2 E s * ) Im ( χ r ( 3 ) * E 1 * E 2 2 E s * ) + Im ( χ n r ( 3 ) E 1 2 E 2 * E a s * ) Im ( χ r ( 3 ) E 1 2 E 2 2 ) ] .
d I t o t a l d z = 3 ϵ 0 ( ω 1 ω 2 ) 8 [ Im ( χ r ( 3 ) E 1 2 E 2 * E a s * ) Im ( χ r ( 3 ) * E 1 * E 2 2 E s * ) + Im ( χ r ( 3 ) E 1 2 E 2 2 ) ] .
E a s ( z ) = i ω a s 8 c n a s 3 ( χ n r ( 3 ) + χ r ( 3 ) ) E 1 2 E 2 * z ,
E s ( z ) = i ω s 8 c n a s 3 ( χ n r ( 3 ) + χ r ( 3 ) * ) E 2 2 E 1 * z .
E m 2 = 2 I m ϵ 0 c n m ,
d I t o t a l d z = ω 1 ω 2 c [ 9 ω a s 8 ϵ 0 2 c 3 n 1 2 n 2 n a s ( χ n r ( 3 ) Re ( χ r ( 3 ) ) + χ r ( 3 ) 2 ) I 1 2 I 2 z ] [ 9 ω s 8 ϵ 0 2 c 3 n 1 n 2 2 n s ( χ n r ( 3 ) Re ( χ r ( 3 ) ) + χ r ( 3 ) 2 ) I 1 I 2 2 z 3 2 ϵ 0 c n 1 n 2 Im ( χ r ( 3 ) ) I 1 I 2 I ] .
d I t o t a l d z = ω 1 ω 2 c [ 9 ω a s 8 ϵ 0 2 c 3 n 1 2 n 2 n a s ( N A Γ ) 2 I 1 2 I 2 z 9 ω s 8 ϵ 0 2 c 3 n 1 n 2 2 n s ( N A Γ ) 2 I 1 I 2 2 z 3 2 ϵ 0 c n 1 n 2 N A Γ I 1 I 2 ] .
Δ I t o t a l ( L ) I t o t a l ( 0 ) = ω 1 ω 2 c I 10 I 20 I 10 + I 20 [ ω a s c n 2 n a s κ 2 I 10 L 2 ω s c n 1 n s κ 2 I 20 L 2 2 κ L ] .

Metrics