Abstract

The propagation of ultrashort light pulses in two-photon media is investigated on the basis of a density-matrix formalism for the molecular levels and a wave equation for the dynamics of the light fields. The simulation shows that the dynamic light–matter coupling and level dynamics lead to saturation effects and space-dependent pulse shaping that determine the dynamic response of the molecular medium.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
    [CrossRef] [PubMed]
  2. T. Kobayashi, N. C. Kothari, and H. Uchiki, "Nondegenerate two-photon optical bistability in a Fabry-Perot cavity filled with large-permanent-dipole molecules," Phys. Rev. A 29, 2727-2733 (1984).
    [CrossRef]
  3. O. G. Calderon, S. Melle, and I. Gonzalo, "Optical bistability in lasers induced by active molecules with a large permanent dipole moment," Phys. Rev. A 65, 023811 (2002).
    [CrossRef]
  4. C. Hoerner, J. P. Lavoine, and A. A. Villaeys, "Theoretical description of two-photon phase conjugation in polar molecules," Phys. Rev. A 48, 1564-1572 (1993).
    [CrossRef] [PubMed]
  5. M. A. Kmetic and W. J. Meath, "Perturbative corrections to the rotating-wave approximation for two-level molecules and the effect of permanent dipoles on single-photon and multiphoton spectra," Phys. Rev. A 41, 1556-1568 (1990).
    [CrossRef] [PubMed]
  6. R. Bavli and Y. B. Band, "Nonlinear absorption and dispersion in a two-level system with permanent dipole moments," Phys. Rev. A 43, 5039-5043 (1991).
    [CrossRef] [PubMed]
  7. A. Diaspro and M. Robello, "Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures," J. Photochem. Photobiol. B 55, 1-8 (2000).
    [CrossRef] [PubMed]
  8. A. Baev, F. Gel'mukhanov, P. Macak, Y. Luo, and H. Agren, "General theory for pulse propagation in two-photon active media," J. Chem. Phys. 117, 6214-6220 (2002).
    [CrossRef]
  9. F. Gelmukhanov, A. Baev, P. Macak, and H. Agren, "Dynamics of two-photon absorption by molecules and solutions," J. Opt. Soc. Am. B 19, 937-945 (2002).
    [CrossRef]
  10. P. Salek, O. Vahtras, J. Guo, Y. Luo, T. Helgaker, and H. Agren, "Calculation of two-photon absorption cross sections by means of density-functional theory," Chem. Phys. Lett. 374, 446-452 (2003).
    [CrossRef]
  11. P. C. Ray and J. Leszczynski, "Two-photon absorption and first nonlinear optical properties of ionic octupolar molecules: structure-function relationships and solvent effects," J. Phys. Chem. A 109, 6689-6696 (2005).
    [CrossRef]
  12. A. Baev, O. Rubi-Pons, F. Gelmukhanov, and H. Agren, "Optical limiting properties of zinc- and platinum-based organometallic compounds," J. Phys. Chem. A 108, 7406-7416 (2004).
    [CrossRef]
  13. A. Baev, P. Salek, F. Gelmukhanov, and H. Agren, "Quantum-classical modeling of nonlinear pulse propagation in a dissolved two-photon active chromophore," J. Phys. Chem. B 110, 5379-5385 (2004).
    [CrossRef]
  14. N. J. Turro, Modern Molecular Photochemistry (Benjamin, 1978).
  15. I. S. Greig and J. D. Morris, "A hopscotch method for the Korteweg-de-Vries equation," J. Comput. Phys. 20, 64-80 (1976).
    [CrossRef]
  16. H. Lajunen, P. Vahimaa, and J. Tervo, "Theory of spatially and spectrally partially coherent pulses," J. Opt. Soc. Am. A 22, 1536-1545 (2005).
    [CrossRef]
  17. T. E. O. Screen, K. B. Lawton, G. S. Wilson, N. Dolney, R. Ispasoiu, T. Goodson III, S. J. Martin, D. D. C. Bradley, and H. L. Anderson, "Synthesis and third order nonlinear optics of a new soluble conjugated prophyrin polymer," J. Mater. Chem. 11, 312-320 (2001).
    [CrossRef]
  18. C. W. Spangler, "Recent development in the design of organic materials for optical power limiting," J. Mater. Chem. 9, 2013-2020 (1999).
    [CrossRef]

2005 (2)

P. C. Ray and J. Leszczynski, "Two-photon absorption and first nonlinear optical properties of ionic octupolar molecules: structure-function relationships and solvent effects," J. Phys. Chem. A 109, 6689-6696 (2005).
[CrossRef]

H. Lajunen, P. Vahimaa, and J. Tervo, "Theory of spatially and spectrally partially coherent pulses," J. Opt. Soc. Am. A 22, 1536-1545 (2005).
[CrossRef]

2004 (2)

A. Baev, O. Rubi-Pons, F. Gelmukhanov, and H. Agren, "Optical limiting properties of zinc- and platinum-based organometallic compounds," J. Phys. Chem. A 108, 7406-7416 (2004).
[CrossRef]

A. Baev, P. Salek, F. Gelmukhanov, and H. Agren, "Quantum-classical modeling of nonlinear pulse propagation in a dissolved two-photon active chromophore," J. Phys. Chem. B 110, 5379-5385 (2004).
[CrossRef]

2003 (1)

P. Salek, O. Vahtras, J. Guo, Y. Luo, T. Helgaker, and H. Agren, "Calculation of two-photon absorption cross sections by means of density-functional theory," Chem. Phys. Lett. 374, 446-452 (2003).
[CrossRef]

2002 (3)

O. G. Calderon, S. Melle, and I. Gonzalo, "Optical bistability in lasers induced by active molecules with a large permanent dipole moment," Phys. Rev. A 65, 023811 (2002).
[CrossRef]

A. Baev, F. Gel'mukhanov, P. Macak, Y. Luo, and H. Agren, "General theory for pulse propagation in two-photon active media," J. Chem. Phys. 117, 6214-6220 (2002).
[CrossRef]

F. Gelmukhanov, A. Baev, P. Macak, and H. Agren, "Dynamics of two-photon absorption by molecules and solutions," J. Opt. Soc. Am. B 19, 937-945 (2002).
[CrossRef]

2001 (1)

T. E. O. Screen, K. B. Lawton, G. S. Wilson, N. Dolney, R. Ispasoiu, T. Goodson III, S. J. Martin, D. D. C. Bradley, and H. L. Anderson, "Synthesis and third order nonlinear optics of a new soluble conjugated prophyrin polymer," J. Mater. Chem. 11, 312-320 (2001).
[CrossRef]

2000 (1)

A. Diaspro and M. Robello, "Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures," J. Photochem. Photobiol. B 55, 1-8 (2000).
[CrossRef] [PubMed]

1999 (1)

C. W. Spangler, "Recent development in the design of organic materials for optical power limiting," J. Mater. Chem. 9, 2013-2020 (1999).
[CrossRef]

1998 (1)

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

1993 (1)

C. Hoerner, J. P. Lavoine, and A. A. Villaeys, "Theoretical description of two-photon phase conjugation in polar molecules," Phys. Rev. A 48, 1564-1572 (1993).
[CrossRef] [PubMed]

1991 (1)

R. Bavli and Y. B. Band, "Nonlinear absorption and dispersion in a two-level system with permanent dipole moments," Phys. Rev. A 43, 5039-5043 (1991).
[CrossRef] [PubMed]

1990 (1)

M. A. Kmetic and W. J. Meath, "Perturbative corrections to the rotating-wave approximation for two-level molecules and the effect of permanent dipoles on single-photon and multiphoton spectra," Phys. Rev. A 41, 1556-1568 (1990).
[CrossRef] [PubMed]

1984 (1)

T. Kobayashi, N. C. Kothari, and H. Uchiki, "Nondegenerate two-photon optical bistability in a Fabry-Perot cavity filled with large-permanent-dipole molecules," Phys. Rev. A 29, 2727-2733 (1984).
[CrossRef]

1976 (1)

I. S. Greig and J. D. Morris, "A hopscotch method for the Korteweg-de-Vries equation," J. Comput. Phys. 20, 64-80 (1976).
[CrossRef]

Agren, H.

A. Baev, O. Rubi-Pons, F. Gelmukhanov, and H. Agren, "Optical limiting properties of zinc- and platinum-based organometallic compounds," J. Phys. Chem. A 108, 7406-7416 (2004).
[CrossRef]

A. Baev, P. Salek, F. Gelmukhanov, and H. Agren, "Quantum-classical modeling of nonlinear pulse propagation in a dissolved two-photon active chromophore," J. Phys. Chem. B 110, 5379-5385 (2004).
[CrossRef]

P. Salek, O. Vahtras, J. Guo, Y. Luo, T. Helgaker, and H. Agren, "Calculation of two-photon absorption cross sections by means of density-functional theory," Chem. Phys. Lett. 374, 446-452 (2003).
[CrossRef]

A. Baev, F. Gel'mukhanov, P. Macak, Y. Luo, and H. Agren, "General theory for pulse propagation in two-photon active media," J. Chem. Phys. 117, 6214-6220 (2002).
[CrossRef]

F. Gelmukhanov, A. Baev, P. Macak, and H. Agren, "Dynamics of two-photon absorption by molecules and solutions," J. Opt. Soc. Am. B 19, 937-945 (2002).
[CrossRef]

Albota, M.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Anderson, H. L.

T. E. O. Screen, K. B. Lawton, G. S. Wilson, N. Dolney, R. Ispasoiu, T. Goodson III, S. J. Martin, D. D. C. Bradley, and H. L. Anderson, "Synthesis and third order nonlinear optics of a new soluble conjugated prophyrin polymer," J. Mater. Chem. 11, 312-320 (2001).
[CrossRef]

Baev, A.

A. Baev, P. Salek, F. Gelmukhanov, and H. Agren, "Quantum-classical modeling of nonlinear pulse propagation in a dissolved two-photon active chromophore," J. Phys. Chem. B 110, 5379-5385 (2004).
[CrossRef]

A. Baev, O. Rubi-Pons, F. Gelmukhanov, and H. Agren, "Optical limiting properties of zinc- and platinum-based organometallic compounds," J. Phys. Chem. A 108, 7406-7416 (2004).
[CrossRef]

F. Gelmukhanov, A. Baev, P. Macak, and H. Agren, "Dynamics of two-photon absorption by molecules and solutions," J. Opt. Soc. Am. B 19, 937-945 (2002).
[CrossRef]

A. Baev, F. Gel'mukhanov, P. Macak, Y. Luo, and H. Agren, "General theory for pulse propagation in two-photon active media," J. Chem. Phys. 117, 6214-6220 (2002).
[CrossRef]

Band, Y. B.

R. Bavli and Y. B. Band, "Nonlinear absorption and dispersion in a two-level system with permanent dipole moments," Phys. Rev. A 43, 5039-5043 (1991).
[CrossRef] [PubMed]

Bavli, R.

R. Bavli and Y. B. Band, "Nonlinear absorption and dispersion in a two-level system with permanent dipole moments," Phys. Rev. A 43, 5039-5043 (1991).
[CrossRef] [PubMed]

Beljonne, D.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Bradley, D. D. C.

T. E. O. Screen, K. B. Lawton, G. S. Wilson, N. Dolney, R. Ispasoiu, T. Goodson III, S. J. Martin, D. D. C. Bradley, and H. L. Anderson, "Synthesis and third order nonlinear optics of a new soluble conjugated prophyrin polymer," J. Mater. Chem. 11, 312-320 (2001).
[CrossRef]

Bredas, J. L.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Calderon, O. G.

O. G. Calderon, S. Melle, and I. Gonzalo, "Optical bistability in lasers induced by active molecules with a large permanent dipole moment," Phys. Rev. A 65, 023811 (2002).
[CrossRef]

Diaspro, A.

A. Diaspro and M. Robello, "Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures," J. Photochem. Photobiol. B 55, 1-8 (2000).
[CrossRef] [PubMed]

Dolney, N.

T. E. O. Screen, K. B. Lawton, G. S. Wilson, N. Dolney, R. Ispasoiu, T. Goodson III, S. J. Martin, D. D. C. Bradley, and H. L. Anderson, "Synthesis and third order nonlinear optics of a new soluble conjugated prophyrin polymer," J. Mater. Chem. 11, 312-320 (2001).
[CrossRef]

Ehrlich, J. E.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Fu, J. Y.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Gelmukhanov, F.

A. Baev, O. Rubi-Pons, F. Gelmukhanov, and H. Agren, "Optical limiting properties of zinc- and platinum-based organometallic compounds," J. Phys. Chem. A 108, 7406-7416 (2004).
[CrossRef]

A. Baev, P. Salek, F. Gelmukhanov, and H. Agren, "Quantum-classical modeling of nonlinear pulse propagation in a dissolved two-photon active chromophore," J. Phys. Chem. B 110, 5379-5385 (2004).
[CrossRef]

F. Gelmukhanov, A. Baev, P. Macak, and H. Agren, "Dynamics of two-photon absorption by molecules and solutions," J. Opt. Soc. Am. B 19, 937-945 (2002).
[CrossRef]

Gel'mukhanov, F.

A. Baev, F. Gel'mukhanov, P. Macak, Y. Luo, and H. Agren, "General theory for pulse propagation in two-photon active media," J. Chem. Phys. 117, 6214-6220 (2002).
[CrossRef]

Gonzalo, I.

O. G. Calderon, S. Melle, and I. Gonzalo, "Optical bistability in lasers induced by active molecules with a large permanent dipole moment," Phys. Rev. A 65, 023811 (2002).
[CrossRef]

Goodson, T.

T. E. O. Screen, K. B. Lawton, G. S. Wilson, N. Dolney, R. Ispasoiu, T. Goodson III, S. J. Martin, D. D. C. Bradley, and H. L. Anderson, "Synthesis and third order nonlinear optics of a new soluble conjugated prophyrin polymer," J. Mater. Chem. 11, 312-320 (2001).
[CrossRef]

Greig, I. S.

I. S. Greig and J. D. Morris, "A hopscotch method for the Korteweg-de-Vries equation," J. Comput. Phys. 20, 64-80 (1976).
[CrossRef]

Guo, J.

P. Salek, O. Vahtras, J. Guo, Y. Luo, T. Helgaker, and H. Agren, "Calculation of two-photon absorption cross sections by means of density-functional theory," Chem. Phys. Lett. 374, 446-452 (2003).
[CrossRef]

Heikal, A. A.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Helgaker, T.

P. Salek, O. Vahtras, J. Guo, Y. Luo, T. Helgaker, and H. Agren, "Calculation of two-photon absorption cross sections by means of density-functional theory," Chem. Phys. Lett. 374, 446-452 (2003).
[CrossRef]

Hess, S. E.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Hoerner, C.

C. Hoerner, J. P. Lavoine, and A. A. Villaeys, "Theoretical description of two-photon phase conjugation in polar molecules," Phys. Rev. A 48, 1564-1572 (1993).
[CrossRef] [PubMed]

Ispasoiu, R.

T. E. O. Screen, K. B. Lawton, G. S. Wilson, N. Dolney, R. Ispasoiu, T. Goodson III, S. J. Martin, D. D. C. Bradley, and H. L. Anderson, "Synthesis and third order nonlinear optics of a new soluble conjugated prophyrin polymer," J. Mater. Chem. 11, 312-320 (2001).
[CrossRef]

Kmetic, M. A.

M. A. Kmetic and W. J. Meath, "Perturbative corrections to the rotating-wave approximation for two-level molecules and the effect of permanent dipoles on single-photon and multiphoton spectra," Phys. Rev. A 41, 1556-1568 (1990).
[CrossRef] [PubMed]

Kobayashi, T.

T. Kobayashi, N. C. Kothari, and H. Uchiki, "Nondegenerate two-photon optical bistability in a Fabry-Perot cavity filled with large-permanent-dipole molecules," Phys. Rev. A 29, 2727-2733 (1984).
[CrossRef]

Kogej, T.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Kothari, N. C.

T. Kobayashi, N. C. Kothari, and H. Uchiki, "Nondegenerate two-photon optical bistability in a Fabry-Perot cavity filled with large-permanent-dipole molecules," Phys. Rev. A 29, 2727-2733 (1984).
[CrossRef]

Lajunen, H.

Lavoine, J. P.

C. Hoerner, J. P. Lavoine, and A. A. Villaeys, "Theoretical description of two-photon phase conjugation in polar molecules," Phys. Rev. A 48, 1564-1572 (1993).
[CrossRef] [PubMed]

Lawton, K. B.

T. E. O. Screen, K. B. Lawton, G. S. Wilson, N. Dolney, R. Ispasoiu, T. Goodson III, S. J. Martin, D. D. C. Bradley, and H. L. Anderson, "Synthesis and third order nonlinear optics of a new soluble conjugated prophyrin polymer," J. Mater. Chem. 11, 312-320 (2001).
[CrossRef]

Leszczynski, J.

P. C. Ray and J. Leszczynski, "Two-photon absorption and first nonlinear optical properties of ionic octupolar molecules: structure-function relationships and solvent effects," J. Phys. Chem. A 109, 6689-6696 (2005).
[CrossRef]

Levin, M. D.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Luo, Y.

P. Salek, O. Vahtras, J. Guo, Y. Luo, T. Helgaker, and H. Agren, "Calculation of two-photon absorption cross sections by means of density-functional theory," Chem. Phys. Lett. 374, 446-452 (2003).
[CrossRef]

A. Baev, F. Gel'mukhanov, P. Macak, Y. Luo, and H. Agren, "General theory for pulse propagation in two-photon active media," J. Chem. Phys. 117, 6214-6220 (2002).
[CrossRef]

Macak, P.

A. Baev, F. Gel'mukhanov, P. Macak, Y. Luo, and H. Agren, "General theory for pulse propagation in two-photon active media," J. Chem. Phys. 117, 6214-6220 (2002).
[CrossRef]

F. Gelmukhanov, A. Baev, P. Macak, and H. Agren, "Dynamics of two-photon absorption by molecules and solutions," J. Opt. Soc. Am. B 19, 937-945 (2002).
[CrossRef]

Marder, S. R.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Martin, S. J.

T. E. O. Screen, K. B. Lawton, G. S. Wilson, N. Dolney, R. Ispasoiu, T. Goodson III, S. J. Martin, D. D. C. Bradley, and H. L. Anderson, "Synthesis and third order nonlinear optics of a new soluble conjugated prophyrin polymer," J. Mater. Chem. 11, 312-320 (2001).
[CrossRef]

McCord-Maughon, D.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Meath, W. J.

M. A. Kmetic and W. J. Meath, "Perturbative corrections to the rotating-wave approximation for two-level molecules and the effect of permanent dipoles on single-photon and multiphoton spectra," Phys. Rev. A 41, 1556-1568 (1990).
[CrossRef] [PubMed]

Melle, S.

O. G. Calderon, S. Melle, and I. Gonzalo, "Optical bistability in lasers induced by active molecules with a large permanent dipole moment," Phys. Rev. A 65, 023811 (2002).
[CrossRef]

Morris, J. D.

I. S. Greig and J. D. Morris, "A hopscotch method for the Korteweg-de-Vries equation," J. Comput. Phys. 20, 64-80 (1976).
[CrossRef]

Perry, J. W.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Ray, P. C.

P. C. Ray and J. Leszczynski, "Two-photon absorption and first nonlinear optical properties of ionic octupolar molecules: structure-function relationships and solvent effects," J. Phys. Chem. A 109, 6689-6696 (2005).
[CrossRef]

Robello, M.

A. Diaspro and M. Robello, "Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures," J. Photochem. Photobiol. B 55, 1-8 (2000).
[CrossRef] [PubMed]

Rockel, H.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Rubi-Pons, O.

A. Baev, O. Rubi-Pons, F. Gelmukhanov, and H. Agren, "Optical limiting properties of zinc- and platinum-based organometallic compounds," J. Phys. Chem. A 108, 7406-7416 (2004).
[CrossRef]

Rumi, M.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Salek, P.

A. Baev, P. Salek, F. Gelmukhanov, and H. Agren, "Quantum-classical modeling of nonlinear pulse propagation in a dissolved two-photon active chromophore," J. Phys. Chem. B 110, 5379-5385 (2004).
[CrossRef]

P. Salek, O. Vahtras, J. Guo, Y. Luo, T. Helgaker, and H. Agren, "Calculation of two-photon absorption cross sections by means of density-functional theory," Chem. Phys. Lett. 374, 446-452 (2003).
[CrossRef]

Screen, T. E. O.

T. E. O. Screen, K. B. Lawton, G. S. Wilson, N. Dolney, R. Ispasoiu, T. Goodson III, S. J. Martin, D. D. C. Bradley, and H. L. Anderson, "Synthesis and third order nonlinear optics of a new soluble conjugated prophyrin polymer," J. Mater. Chem. 11, 312-320 (2001).
[CrossRef]

Spangler, C. W.

C. W. Spangler, "Recent development in the design of organic materials for optical power limiting," J. Mater. Chem. 9, 2013-2020 (1999).
[CrossRef]

Subramaniam, G.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Tervo, J.

Turro, N. J.

N. J. Turro, Modern Molecular Photochemistry (Benjamin, 1978).

Uchiki, H.

T. Kobayashi, N. C. Kothari, and H. Uchiki, "Nondegenerate two-photon optical bistability in a Fabry-Perot cavity filled with large-permanent-dipole molecules," Phys. Rev. A 29, 2727-2733 (1984).
[CrossRef]

Vahimaa, P.

Vahtras, O.

P. Salek, O. Vahtras, J. Guo, Y. Luo, T. Helgaker, and H. Agren, "Calculation of two-photon absorption cross sections by means of density-functional theory," Chem. Phys. Lett. 374, 446-452 (2003).
[CrossRef]

Villaeys, A. A.

C. Hoerner, J. P. Lavoine, and A. A. Villaeys, "Theoretical description of two-photon phase conjugation in polar molecules," Phys. Rev. A 48, 1564-1572 (1993).
[CrossRef] [PubMed]

Webb, W. W.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Wilson, G. S.

T. E. O. Screen, K. B. Lawton, G. S. Wilson, N. Dolney, R. Ispasoiu, T. Goodson III, S. J. Martin, D. D. C. Bradley, and H. L. Anderson, "Synthesis and third order nonlinear optics of a new soluble conjugated prophyrin polymer," J. Mater. Chem. 11, 312-320 (2001).
[CrossRef]

Wu, X. L.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Xu, C.

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

P. Salek, O. Vahtras, J. Guo, Y. Luo, T. Helgaker, and H. Agren, "Calculation of two-photon absorption cross sections by means of density-functional theory," Chem. Phys. Lett. 374, 446-452 (2003).
[CrossRef]

J. Chem. Phys. (1)

A. Baev, F. Gel'mukhanov, P. Macak, Y. Luo, and H. Agren, "General theory for pulse propagation in two-photon active media," J. Chem. Phys. 117, 6214-6220 (2002).
[CrossRef]

J. Comput. Phys. (1)

I. S. Greig and J. D. Morris, "A hopscotch method for the Korteweg-de-Vries equation," J. Comput. Phys. 20, 64-80 (1976).
[CrossRef]

J. Mater. Chem. (2)

T. E. O. Screen, K. B. Lawton, G. S. Wilson, N. Dolney, R. Ispasoiu, T. Goodson III, S. J. Martin, D. D. C. Bradley, and H. L. Anderson, "Synthesis and third order nonlinear optics of a new soluble conjugated prophyrin polymer," J. Mater. Chem. 11, 312-320 (2001).
[CrossRef]

C. W. Spangler, "Recent development in the design of organic materials for optical power limiting," J. Mater. Chem. 9, 2013-2020 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. B (1)

A. Diaspro and M. Robello, "Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures," J. Photochem. Photobiol. B 55, 1-8 (2000).
[CrossRef] [PubMed]

J. Phys. Chem. A (2)

P. C. Ray and J. Leszczynski, "Two-photon absorption and first nonlinear optical properties of ionic octupolar molecules: structure-function relationships and solvent effects," J. Phys. Chem. A 109, 6689-6696 (2005).
[CrossRef]

A. Baev, O. Rubi-Pons, F. Gelmukhanov, and H. Agren, "Optical limiting properties of zinc- and platinum-based organometallic compounds," J. Phys. Chem. A 108, 7406-7416 (2004).
[CrossRef]

J. Phys. Chem. B (1)

A. Baev, P. Salek, F. Gelmukhanov, and H. Agren, "Quantum-classical modeling of nonlinear pulse propagation in a dissolved two-photon active chromophore," J. Phys. Chem. B 110, 5379-5385 (2004).
[CrossRef]

Phys. Rev. A (5)

T. Kobayashi, N. C. Kothari, and H. Uchiki, "Nondegenerate two-photon optical bistability in a Fabry-Perot cavity filled with large-permanent-dipole molecules," Phys. Rev. A 29, 2727-2733 (1984).
[CrossRef]

O. G. Calderon, S. Melle, and I. Gonzalo, "Optical bistability in lasers induced by active molecules with a large permanent dipole moment," Phys. Rev. A 65, 023811 (2002).
[CrossRef]

C. Hoerner, J. P. Lavoine, and A. A. Villaeys, "Theoretical description of two-photon phase conjugation in polar molecules," Phys. Rev. A 48, 1564-1572 (1993).
[CrossRef] [PubMed]

M. A. Kmetic and W. J. Meath, "Perturbative corrections to the rotating-wave approximation for two-level molecules and the effect of permanent dipoles on single-photon and multiphoton spectra," Phys. Rev. A 41, 1556-1568 (1990).
[CrossRef] [PubMed]

R. Bavli and Y. B. Band, "Nonlinear absorption and dispersion in a two-level system with permanent dipole moments," Phys. Rev. A 43, 5039-5043 (1991).
[CrossRef] [PubMed]

Science (1)

M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998).
[CrossRef] [PubMed]

Other (1)

N. J. Turro, Modern Molecular Photochemistry (Benjamin, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy levels of the model system.

Fig. 2
Fig. 2

Dynamic pulse shaping and absorption of a picosecond pulse in the (a)–(d) small-signal regime and (e)–(h) saturation regime: snapshots of the level occupations in the (a), (e) ground level and (b), (f) first excited level; (c), (g) molecular polarization; and (d), (h) dependence of the pulse shape on propagation length ( z ) and time ( t ) in a time window of 50 ps .

Fig. 3
Fig. 3

Dynamic pulse shaping and absorption of a femtosecond pulse in the (a)–(c) small-signal regime and (d)–(f) saturation regime: snapshots of the level occupations in the (a), (d) ground level; (b), (e) first excited level; and (c), (f) molecular polarization.

Fig. 4
Fig. 4

Snapshots of the (a) intensity distribution of the injected picosecond pulse and (b), (c) distributions after a propagation length of 1 mm . (b) Small spatial variations in molecular properties (3%); (c) large spatial variations in molecular properties (8%).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

± z E ± + n c t E ± i 2 k z 2 x 2 E ± = i k z 2 ϵ P ± ,
P = Tr ( d ρ ) = 2 Re [ d 0 i ρ i 0 + j ( d j 0 ρ 0 j + d j i ρ i j ) ] ,
( t + Γ 0 j ) ρ 0 j = i h [ j 1 V 0 j 1 ρ j 1 j ρ 00 V 0 j + i ( V 0 i ρ i j ρ 0 i V i j ) ] ,
( t + Γ j i ) ρ j i = i ( V j 1 ρ i i j 1 ρ j j 1 V j 1 i + V j 0 ρ 0 i ρ j 0 V 0 i ) ,
( t + Γ 0 i ) ρ 0 i = i [ V 0 i ( ρ i i ρ 00 ) + j ( V 0 j ρ j i ρ 0 j V j i ) ] ,
( t + Γ i i ) ρ i i = j Γ j j ρ j j 2 Re ( i j V i j ρ j i + i V i 0 ρ 0 i ) ,
( t + Γ j j ) ρ j j = 2 Re ( i V j 0 ρ 0 j + i i V j i ρ i j ) ,
j ρ j j = N .

Metrics