Abstract

We measured the radiative lifetime of Nd:YAG nanopowder with an average particle size of 20nm suspended in different organic and inorganic liquids. To extract information regarding local-field effects, we fitted the experimental data to three different local-field models: the virtual-cavity (or Lorentz) model, the real-cavity model, and the no-local-field-effects model. The real-cavity model and the no-local-field-effects model can both be adequately fitted to our experimental results, while the virtual-cavity model can be ruled out.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Berman, ed., Cavity Quantum Electrodynamics (Academic, 1994).
  2. P. de Vries and A. Lagendijk, "Resonant scattering and spontaneous emission in dielectrics: microscopic derivation of local-field effects," Phys. Rev. Lett. 81, 1381-1384 (1998).
    [CrossRef]
  3. J. E. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992).
    [CrossRef] [PubMed]
  4. R. J. Gehr and R. W. Boyd, "Optical properties of nanostructured optical materials," Chem. Mater. 1996, 1807-1819.
  5. E. Snoeks, A. Lagendijk, and A. Polman, "Measuring and modifying the spontaneous emission rate of erbium near an interface," Phys. Rev. Lett. 74, 2459-2462 (1995).
    [CrossRef] [PubMed]
  6. G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, "Enhanced nonlinear optical response of composite materials," Phys. Rev. Lett. 74, 1871-1874 (1995).
    [CrossRef] [PubMed]
  7. V. M. Shalaev and M. I. Stockman, "Fractals: optical susceptibility and giant Raman scattering," Z. Phys. D: At., Mol. Clusters 10, 71-79 (1988).
    [CrossRef]
  8. G. L. J. A. Rikken and Y. A. R. R. Kessener, "Local field effects and electric and magnetic dipole transitions in dielectrics," Phys. Rev. Lett. 74, 880-883 (1995).
    [CrossRef] [PubMed]
  9. F. J. P. Schuurmans, D. T. N. de Lang, G. H. Wegdam, R. Sprik, and A. Lagendijk, "Local-field effects on spontaneous emission in a dense supercritical gas," Phys. Rev. Lett. 80, 5077-5080 (1998).
    [CrossRef]
  10. G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Measurement of local field effects of the host on the lifetimes of embedded emitters," Phys. Rev. Lett. 91, 203903 (2003).
    [CrossRef]
  11. G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Experimental studies of spontaneous emission from dopants in an absorbing dielectric," Opt. Lett. 30, 732-734 (2005).
    [CrossRef] [PubMed]
  12. P. W. Milonni, "Field quantization and radiative processes in dispersive dielectric media," J. Mod. Opt. 42, 1991-2004 (1995).
    [CrossRef]
  13. D. E. Aspnes, "Local-field effects and effective-medium theory: a microscopic perspective," Am. J. Phys. 50, 704-709 (1982).
    [CrossRef]
  14. R. J. Glauber and M. Lewenstein, "Quantum optics of dielectric media," Phys. Rev. A 43, 467-491 (1991).
    [CrossRef] [PubMed]
  15. H. A. Lorentz, Theory of Electrons, 2nd ed. (Teubner, 1916).
  16. J. D. Jackson, Classical Electrodynamics (Wiley, 1962).
  17. C.-K. Duan, M. F. Reid, and Z. Wang, "Local field effects on the radiative lifetime of emitters in surrounding media: virtual- or real-cavity model?" Phys. Lett. A 343, 474-480 (2005).
    [CrossRef]
  18. J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, "Linear and nonlinear optical measurements of the Lorentz local field," Phys. Rev. Lett. 67, 972-975 (1991).
    [CrossRef] [PubMed]
  19. P. Lavallard, M. Rosenbauer, and T. Gacoin, "Influence of surrounding dielectrics on the spontaneous emission of sulforhodamine B molecules," Phys. Rev. A 54, 5450-5453 (1996).
    [CrossRef] [PubMed]
  20. G. Lamouche, P. Lavallard, and T. Gacoin, "Optical properties of dye molecules as a function of the surrounding dielectric medium," Phys. Rev. A 59, 4668-4674 (1999).
    [CrossRef]
  21. S. F. Wuister, C. de Mello Donega, and A. Meijerink, "Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media," J. Chem. Phys. 121, 4310-4315 (2004).
    [CrossRef] [PubMed]
  22. R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, "Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium," Phys. Rev. B 60, R14012-R14015 (1999).
    [CrossRef]
  23. The composites containing Eu3+ embedded in a ligand cage (Refs. ) are fundamentally different from the sort of nanocomposite material considered in Ref. and in the present work.
  24. H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, "Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders," Phys. Rev. B 25, 1467-1473 (1982).
    [CrossRef]
  25. In this paper we consider the Nd3+:YAG nanoparticles to be the emitters in our composite materials.
  26. J. C. Maxwell Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London Ser. A 203, 384-420 (1904).
  27. J. C. Maxwell Garnett, "Colours in metal glasses in metallic films and in metallic solutions," Philos. Trans. R. Soc. London, Ser. A 205, 237-288 (1906).
  28. N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission: application to Nd:YAG lasers," IEEE J. Quantum Electron. 35, 101-109 (1999).
    [CrossRef]
  29. By "vacuum" we mean the radiative lifetime of an ion placed in the same chemical environment but for a medium of refractive index of unity.
  30. T. S. Lomheim and L. G. DeShazer, "Determination of optical cross sections by the measurement of saturation flux using laser-pumped laser oscillators," J. Opt. Soc. Am. 68, 1575-1579 (1978).
    [CrossRef]
  31. T. Kushida and J. E. Geusic, "Optical refrigeration in Nd-doped yttrium aluminum garnet," Phys. Rev. Lett. 21, 1172-1175 (1968).
    [CrossRef]
  32. S. Singh, R. G. Smith, and L. G. Van Uitert, "Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature," Phys. Rev. B 10, 2566-2572 (1974).
    [CrossRef]
  33. A. Rosencwaig and E. A. Hildum, "Nd3+ fluorescence quantum-efficiency measurements with photo acoustics," Phys. Rev. B 23, 3301-3307 (1981).
    [CrossRef]
  34. C. J. Kennedy and J. D. Barry, "New evidence on quantum efficiency of Nd:YAG," Appl. Phys. Lett. 31, 91-92 (1977).
    [CrossRef]

2005 (2)

G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Experimental studies of spontaneous emission from dopants in an absorbing dielectric," Opt. Lett. 30, 732-734 (2005).
[CrossRef] [PubMed]

C.-K. Duan, M. F. Reid, and Z. Wang, "Local field effects on the radiative lifetime of emitters in surrounding media: virtual- or real-cavity model?" Phys. Lett. A 343, 474-480 (2005).
[CrossRef]

2004 (1)

S. F. Wuister, C. de Mello Donega, and A. Meijerink, "Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media," J. Chem. Phys. 121, 4310-4315 (2004).
[CrossRef] [PubMed]

2003 (1)

G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Measurement of local field effects of the host on the lifetimes of embedded emitters," Phys. Rev. Lett. 91, 203903 (2003).
[CrossRef]

1999 (3)

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, "Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium," Phys. Rev. B 60, R14012-R14015 (1999).
[CrossRef]

G. Lamouche, P. Lavallard, and T. Gacoin, "Optical properties of dye molecules as a function of the surrounding dielectric medium," Phys. Rev. A 59, 4668-4674 (1999).
[CrossRef]

N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission: application to Nd:YAG lasers," IEEE J. Quantum Electron. 35, 101-109 (1999).
[CrossRef]

1998 (2)

F. J. P. Schuurmans, D. T. N. de Lang, G. H. Wegdam, R. Sprik, and A. Lagendijk, "Local-field effects on spontaneous emission in a dense supercritical gas," Phys. Rev. Lett. 80, 5077-5080 (1998).
[CrossRef]

P. de Vries and A. Lagendijk, "Resonant scattering and spontaneous emission in dielectrics: microscopic derivation of local-field effects," Phys. Rev. Lett. 81, 1381-1384 (1998).
[CrossRef]

1996 (1)

P. Lavallard, M. Rosenbauer, and T. Gacoin, "Influence of surrounding dielectrics on the spontaneous emission of sulforhodamine B molecules," Phys. Rev. A 54, 5450-5453 (1996).
[CrossRef] [PubMed]

1995 (4)

E. Snoeks, A. Lagendijk, and A. Polman, "Measuring and modifying the spontaneous emission rate of erbium near an interface," Phys. Rev. Lett. 74, 2459-2462 (1995).
[CrossRef] [PubMed]

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, "Enhanced nonlinear optical response of composite materials," Phys. Rev. Lett. 74, 1871-1874 (1995).
[CrossRef] [PubMed]

G. L. J. A. Rikken and Y. A. R. R. Kessener, "Local field effects and electric and magnetic dipole transitions in dielectrics," Phys. Rev. Lett. 74, 880-883 (1995).
[CrossRef] [PubMed]

P. W. Milonni, "Field quantization and radiative processes in dispersive dielectric media," J. Mod. Opt. 42, 1991-2004 (1995).
[CrossRef]

1992 (1)

J. E. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992).
[CrossRef] [PubMed]

1991 (2)

R. J. Glauber and M. Lewenstein, "Quantum optics of dielectric media," Phys. Rev. A 43, 467-491 (1991).
[CrossRef] [PubMed]

J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, "Linear and nonlinear optical measurements of the Lorentz local field," Phys. Rev. Lett. 67, 972-975 (1991).
[CrossRef] [PubMed]

1988 (1)

V. M. Shalaev and M. I. Stockman, "Fractals: optical susceptibility and giant Raman scattering," Z. Phys. D: At., Mol. Clusters 10, 71-79 (1988).
[CrossRef]

1982 (2)

D. E. Aspnes, "Local-field effects and effective-medium theory: a microscopic perspective," Am. J. Phys. 50, 704-709 (1982).
[CrossRef]

H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, "Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders," Phys. Rev. B 25, 1467-1473 (1982).
[CrossRef]

1981 (1)

A. Rosencwaig and E. A. Hildum, "Nd3+ fluorescence quantum-efficiency measurements with photo acoustics," Phys. Rev. B 23, 3301-3307 (1981).
[CrossRef]

1978 (1)

1977 (1)

C. J. Kennedy and J. D. Barry, "New evidence on quantum efficiency of Nd:YAG," Appl. Phys. Lett. 31, 91-92 (1977).
[CrossRef]

1974 (1)

S. Singh, R. G. Smith, and L. G. Van Uitert, "Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature," Phys. Rev. B 10, 2566-2572 (1974).
[CrossRef]

1968 (1)

T. Kushida and J. E. Geusic, "Optical refrigeration in Nd-doped yttrium aluminum garnet," Phys. Rev. Lett. 21, 1172-1175 (1968).
[CrossRef]

1906 (1)

J. C. Maxwell Garnett, "Colours in metal glasses in metallic films and in metallic solutions," Philos. Trans. R. Soc. London, Ser. A 205, 237-288 (1906).

1904 (1)

J. C. Maxwell Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London Ser. A 203, 384-420 (1904).

Agarwal, G. S.

G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Experimental studies of spontaneous emission from dopants in an absorbing dielectric," Opt. Lett. 30, 732-734 (2005).
[CrossRef] [PubMed]

G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Measurement of local field effects of the host on the lifetimes of embedded emitters," Phys. Rev. Lett. 91, 203903 (2003).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, "Local-field effects and effective-medium theory: a microscopic perspective," Am. J. Phys. 50, 704-709 (1982).
[CrossRef]

Barnes, N. P.

N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission: application to Nd:YAG lasers," IEEE J. Quantum Electron. 35, 101-109 (1999).
[CrossRef]

Barry, J. D.

C. J. Kennedy and J. D. Barry, "New evidence on quantum efficiency of Nd:YAG," Appl. Phys. Lett. 31, 91-92 (1977).
[CrossRef]

Berman, P. R.

P. R. Berman, ed., Cavity Quantum Electrodynamics (Academic, 1994).

Boyd, R. W.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, "Enhanced nonlinear optical response of composite materials," Phys. Rev. Lett. 74, 1871-1874 (1995).
[CrossRef] [PubMed]

J. E. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992).
[CrossRef] [PubMed]

J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, "Linear and nonlinear optical measurements of the Lorentz local field," Phys. Rev. Lett. 67, 972-975 (1991).
[CrossRef] [PubMed]

R. J. Gehr and R. W. Boyd, "Optical properties of nanostructured optical materials," Chem. Mater. 1996, 1807-1819.

Christensen, H. P.

H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, "Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders," Phys. Rev. B 25, 1467-1473 (1982).
[CrossRef]

de Lang, D. T. N.

F. J. P. Schuurmans, D. T. N. de Lang, G. H. Wegdam, R. Sprik, and A. Lagendijk, "Local-field effects on spontaneous emission in a dense supercritical gas," Phys. Rev. Lett. 80, 5077-5080 (1998).
[CrossRef]

de Mello Donega, C.

S. F. Wuister, C. de Mello Donega, and A. Meijerink, "Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media," J. Chem. Phys. 121, 4310-4315 (2004).
[CrossRef] [PubMed]

de Vries, P.

P. de Vries and A. Lagendijk, "Resonant scattering and spontaneous emission in dielectrics: microscopic derivation of local-field effects," Phys. Rev. Lett. 81, 1381-1384 (1998).
[CrossRef]

DeShazer, L. G.

Duan, C.-K.

C.-K. Duan, M. F. Reid, and Z. Wang, "Local field effects on the radiative lifetime of emitters in surrounding media: virtual- or real-cavity model?" Phys. Lett. A 343, 474-480 (2005).
[CrossRef]

Feofilov, S. P.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, "Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium," Phys. Rev. B 60, R14012-R14015 (1999).
[CrossRef]

Fischer, G. L.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, "Enhanced nonlinear optical response of composite materials," Phys. Rev. Lett. 74, 1871-1874 (1995).
[CrossRef] [PubMed]

Gabbe, D. R.

H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, "Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders," Phys. Rev. B 25, 1467-1473 (1982).
[CrossRef]

Gacoin, T.

G. Lamouche, P. Lavallard, and T. Gacoin, "Optical properties of dye molecules as a function of the surrounding dielectric medium," Phys. Rev. A 59, 4668-4674 (1999).
[CrossRef]

P. Lavallard, M. Rosenbauer, and T. Gacoin, "Influence of surrounding dielectrics on the spontaneous emission of sulforhodamine B molecules," Phys. Rev. A 54, 5450-5453 (1996).
[CrossRef] [PubMed]

Gehr, R. J.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, "Enhanced nonlinear optical response of composite materials," Phys. Rev. Lett. 74, 1871-1874 (1995).
[CrossRef] [PubMed]

R. J. Gehr and R. W. Boyd, "Optical properties of nanostructured optical materials," Chem. Mater. 1996, 1807-1819.

Geusic, J. E.

T. Kushida and J. E. Geusic, "Optical refrigeration in Nd-doped yttrium aluminum garnet," Phys. Rev. Lett. 21, 1172-1175 (1968).
[CrossRef]

Glauber, R. J.

R. J. Glauber and M. Lewenstein, "Quantum optics of dielectric media," Phys. Rev. A 43, 467-491 (1991).
[CrossRef] [PubMed]

Hildum, E. A.

A. Rosencwaig and E. A. Hildum, "Nd3+ fluorescence quantum-efficiency measurements with photo acoustics," Phys. Rev. B 23, 3301-3307 (1981).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1962).

Jenekhe, S. A.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, "Enhanced nonlinear optical response of composite materials," Phys. Rev. Lett. 74, 1871-1874 (1995).
[CrossRef] [PubMed]

Jenssen, H. P.

H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, "Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders," Phys. Rev. B 25, 1467-1473 (1982).
[CrossRef]

Kennedy, C. J.

C. J. Kennedy and J. D. Barry, "New evidence on quantum efficiency of Nd:YAG," Appl. Phys. Lett. 31, 91-92 (1977).
[CrossRef]

Kessener, Y. A. R. R.

G. L. J. A. Rikken and Y. A. R. R. Kessener, "Local field effects and electric and magnetic dipole transitions in dielectrics," Phys. Rev. Lett. 74, 880-883 (1995).
[CrossRef] [PubMed]

Kumar, G. M.

G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Experimental studies of spontaneous emission from dopants in an absorbing dielectric," Opt. Lett. 30, 732-734 (2005).
[CrossRef] [PubMed]

G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Measurement of local field effects of the host on the lifetimes of embedded emitters," Phys. Rev. Lett. 91, 203903 (2003).
[CrossRef]

Kushida, T.

T. Kushida and J. E. Geusic, "Optical refrigeration in Nd-doped yttrium aluminum garnet," Phys. Rev. Lett. 21, 1172-1175 (1968).
[CrossRef]

Lagendijk, A.

F. J. P. Schuurmans, D. T. N. de Lang, G. H. Wegdam, R. Sprik, and A. Lagendijk, "Local-field effects on spontaneous emission in a dense supercritical gas," Phys. Rev. Lett. 80, 5077-5080 (1998).
[CrossRef]

P. de Vries and A. Lagendijk, "Resonant scattering and spontaneous emission in dielectrics: microscopic derivation of local-field effects," Phys. Rev. Lett. 81, 1381-1384 (1998).
[CrossRef]

E. Snoeks, A. Lagendijk, and A. Polman, "Measuring and modifying the spontaneous emission rate of erbium near an interface," Phys. Rev. Lett. 74, 2459-2462 (1995).
[CrossRef] [PubMed]

Lamouche, G.

G. Lamouche, P. Lavallard, and T. Gacoin, "Optical properties of dye molecules as a function of the surrounding dielectric medium," Phys. Rev. A 59, 4668-4674 (1999).
[CrossRef]

Lavallard, P.

G. Lamouche, P. Lavallard, and T. Gacoin, "Optical properties of dye molecules as a function of the surrounding dielectric medium," Phys. Rev. A 59, 4668-4674 (1999).
[CrossRef]

P. Lavallard, M. Rosenbauer, and T. Gacoin, "Influence of surrounding dielectrics on the spontaneous emission of sulforhodamine B molecules," Phys. Rev. A 54, 5450-5453 (1996).
[CrossRef] [PubMed]

Lewenstein, M.

R. J. Glauber and M. Lewenstein, "Quantum optics of dielectric media," Phys. Rev. A 43, 467-491 (1991).
[CrossRef] [PubMed]

Lomheim, T. S.

Lorentz, H. A.

H. A. Lorentz, Theory of Electrons, 2nd ed. (Teubner, 1916).

Maki, J. J.

J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, "Linear and nonlinear optical measurements of the Lorentz local field," Phys. Rev. Lett. 67, 972-975 (1991).
[CrossRef] [PubMed]

Malcuit, M. S.

J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, "Linear and nonlinear optical measurements of the Lorentz local field," Phys. Rev. Lett. 67, 972-975 (1991).
[CrossRef] [PubMed]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, "Colours in metal glasses in metallic films and in metallic solutions," Philos. Trans. R. Soc. London, Ser. A 205, 237-288 (1906).

J. C. Maxwell Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London Ser. A 203, 384-420 (1904).

Meijerink, A.

S. F. Wuister, C. de Mello Donega, and A. Meijerink, "Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media," J. Chem. Phys. 121, 4310-4315 (2004).
[CrossRef] [PubMed]

Meltzer, R. S.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, "Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium," Phys. Rev. B 60, R14012-R14015 (1999).
[CrossRef]

Milonni, P. W.

P. W. Milonni, "Field quantization and radiative processes in dispersive dielectric media," J. Mod. Opt. 42, 1991-2004 (1995).
[CrossRef]

Osaheni, J. A.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, "Enhanced nonlinear optical response of composite materials," Phys. Rev. Lett. 74, 1871-1874 (1995).
[CrossRef] [PubMed]

Polman, A.

E. Snoeks, A. Lagendijk, and A. Polman, "Measuring and modifying the spontaneous emission rate of erbium near an interface," Phys. Rev. Lett. 74, 2459-2462 (1995).
[CrossRef] [PubMed]

Rao, D. N.

G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Experimental studies of spontaneous emission from dopants in an absorbing dielectric," Opt. Lett. 30, 732-734 (2005).
[CrossRef] [PubMed]

G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Measurement of local field effects of the host on the lifetimes of embedded emitters," Phys. Rev. Lett. 91, 203903 (2003).
[CrossRef]

Reid, M. F.

C.-K. Duan, M. F. Reid, and Z. Wang, "Local field effects on the radiative lifetime of emitters in surrounding media: virtual- or real-cavity model?" Phys. Lett. A 343, 474-480 (2005).
[CrossRef]

Rikken, G. L. J. A.

G. L. J. A. Rikken and Y. A. R. R. Kessener, "Local field effects and electric and magnetic dipole transitions in dielectrics," Phys. Rev. Lett. 74, 880-883 (1995).
[CrossRef] [PubMed]

Rosenbauer, M.

P. Lavallard, M. Rosenbauer, and T. Gacoin, "Influence of surrounding dielectrics on the spontaneous emission of sulforhodamine B molecules," Phys. Rev. A 54, 5450-5453 (1996).
[CrossRef] [PubMed]

Rosencwaig, A.

A. Rosencwaig and E. A. Hildum, "Nd3+ fluorescence quantum-efficiency measurements with photo acoustics," Phys. Rev. B 23, 3301-3307 (1981).
[CrossRef]

Schuurmans, F. J. P.

F. J. P. Schuurmans, D. T. N. de Lang, G. H. Wegdam, R. Sprik, and A. Lagendijk, "Local-field effects on spontaneous emission in a dense supercritical gas," Phys. Rev. Lett. 80, 5077-5080 (1998).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev and M. I. Stockman, "Fractals: optical susceptibility and giant Raman scattering," Z. Phys. D: At., Mol. Clusters 10, 71-79 (1988).
[CrossRef]

Singh, S.

S. Singh, R. G. Smith, and L. G. Van Uitert, "Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature," Phys. Rev. B 10, 2566-2572 (1974).
[CrossRef]

Sipe, J. E.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, "Enhanced nonlinear optical response of composite materials," Phys. Rev. Lett. 74, 1871-1874 (1995).
[CrossRef] [PubMed]

J. E. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992).
[CrossRef] [PubMed]

J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, "Linear and nonlinear optical measurements of the Lorentz local field," Phys. Rev. Lett. 67, 972-975 (1991).
[CrossRef] [PubMed]

Smith, R. G.

S. Singh, R. G. Smith, and L. G. Van Uitert, "Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature," Phys. Rev. B 10, 2566-2572 (1974).
[CrossRef]

Snoeks, E.

E. Snoeks, A. Lagendijk, and A. Polman, "Measuring and modifying the spontaneous emission rate of erbium near an interface," Phys. Rev. Lett. 74, 2459-2462 (1995).
[CrossRef] [PubMed]

Sprik, R.

F. J. P. Schuurmans, D. T. N. de Lang, G. H. Wegdam, R. Sprik, and A. Lagendijk, "Local-field effects on spontaneous emission in a dense supercritical gas," Phys. Rev. Lett. 80, 5077-5080 (1998).
[CrossRef]

Stockman, M. I.

V. M. Shalaev and M. I. Stockman, "Fractals: optical susceptibility and giant Raman scattering," Z. Phys. D: At., Mol. Clusters 10, 71-79 (1988).
[CrossRef]

Tissue, B.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, "Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium," Phys. Rev. B 60, R14012-R14015 (1999).
[CrossRef]

Van Uitert, L. G.

S. Singh, R. G. Smith, and L. G. Van Uitert, "Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature," Phys. Rev. B 10, 2566-2572 (1974).
[CrossRef]

Walsh, B. M.

N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission: application to Nd:YAG lasers," IEEE J. Quantum Electron. 35, 101-109 (1999).
[CrossRef]

Wang, Z.

C.-K. Duan, M. F. Reid, and Z. Wang, "Local field effects on the radiative lifetime of emitters in surrounding media: virtual- or real-cavity model?" Phys. Lett. A 343, 474-480 (2005).
[CrossRef]

Wegdam, G. H.

F. J. P. Schuurmans, D. T. N. de Lang, G. H. Wegdam, R. Sprik, and A. Lagendijk, "Local-field effects on spontaneous emission in a dense supercritical gas," Phys. Rev. Lett. 80, 5077-5080 (1998).
[CrossRef]

Weller-Brophy, L. A.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, "Enhanced nonlinear optical response of composite materials," Phys. Rev. Lett. 74, 1871-1874 (1995).
[CrossRef] [PubMed]

Wuister, S. F.

S. F. Wuister, C. de Mello Donega, and A. Meijerink, "Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media," J. Chem. Phys. 121, 4310-4315 (2004).
[CrossRef] [PubMed]

Yuan, H. B.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, "Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium," Phys. Rev. B 60, R14012-R14015 (1999).
[CrossRef]

Am. J. Phys. (1)

D. E. Aspnes, "Local-field effects and effective-medium theory: a microscopic perspective," Am. J. Phys. 50, 704-709 (1982).
[CrossRef]

Appl. Phys. Lett. (1)

C. J. Kennedy and J. D. Barry, "New evidence on quantum efficiency of Nd:YAG," Appl. Phys. Lett. 31, 91-92 (1977).
[CrossRef]

Chem. Mater. (1)

R. J. Gehr and R. W. Boyd, "Optical properties of nanostructured optical materials," Chem. Mater. 1996, 1807-1819.

IEEE J. Quantum Electron. (1)

N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission: application to Nd:YAG lasers," IEEE J. Quantum Electron. 35, 101-109 (1999).
[CrossRef]

J. Chem. Phys. (1)

S. F. Wuister, C. de Mello Donega, and A. Meijerink, "Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media," J. Chem. Phys. 121, 4310-4315 (2004).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

P. W. Milonni, "Field quantization and radiative processes in dispersive dielectric media," J. Mod. Opt. 42, 1991-2004 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Philos. Trans. R. Soc. London Ser. A (1)

J. C. Maxwell Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London Ser. A 203, 384-420 (1904).

Philos. Trans. R. Soc. London, Ser. A (1)

J. C. Maxwell Garnett, "Colours in metal glasses in metallic films and in metallic solutions," Philos. Trans. R. Soc. London, Ser. A 205, 237-288 (1906).

Phys. Lett. A (1)

C.-K. Duan, M. F. Reid, and Z. Wang, "Local field effects on the radiative lifetime of emitters in surrounding media: virtual- or real-cavity model?" Phys. Lett. A 343, 474-480 (2005).
[CrossRef]

Phys. Rev. A (4)

J. E. Sipe and R. W. Boyd, "Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model," Phys. Rev. A 46, 1614-1629 (1992).
[CrossRef] [PubMed]

R. J. Glauber and M. Lewenstein, "Quantum optics of dielectric media," Phys. Rev. A 43, 467-491 (1991).
[CrossRef] [PubMed]

P. Lavallard, M. Rosenbauer, and T. Gacoin, "Influence of surrounding dielectrics on the spontaneous emission of sulforhodamine B molecules," Phys. Rev. A 54, 5450-5453 (1996).
[CrossRef] [PubMed]

G. Lamouche, P. Lavallard, and T. Gacoin, "Optical properties of dye molecules as a function of the surrounding dielectric medium," Phys. Rev. A 59, 4668-4674 (1999).
[CrossRef]

Phys. Rev. B (4)

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, "Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium," Phys. Rev. B 60, R14012-R14015 (1999).
[CrossRef]

H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, "Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders," Phys. Rev. B 25, 1467-1473 (1982).
[CrossRef]

S. Singh, R. G. Smith, and L. G. Van Uitert, "Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature," Phys. Rev. B 10, 2566-2572 (1974).
[CrossRef]

A. Rosencwaig and E. A. Hildum, "Nd3+ fluorescence quantum-efficiency measurements with photo acoustics," Phys. Rev. B 23, 3301-3307 (1981).
[CrossRef]

Phys. Rev. Lett. (8)

T. Kushida and J. E. Geusic, "Optical refrigeration in Nd-doped yttrium aluminum garnet," Phys. Rev. Lett. 21, 1172-1175 (1968).
[CrossRef]

J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, "Linear and nonlinear optical measurements of the Lorentz local field," Phys. Rev. Lett. 67, 972-975 (1991).
[CrossRef] [PubMed]

E. Snoeks, A. Lagendijk, and A. Polman, "Measuring and modifying the spontaneous emission rate of erbium near an interface," Phys. Rev. Lett. 74, 2459-2462 (1995).
[CrossRef] [PubMed]

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, "Enhanced nonlinear optical response of composite materials," Phys. Rev. Lett. 74, 1871-1874 (1995).
[CrossRef] [PubMed]

P. de Vries and A. Lagendijk, "Resonant scattering and spontaneous emission in dielectrics: microscopic derivation of local-field effects," Phys. Rev. Lett. 81, 1381-1384 (1998).
[CrossRef]

G. L. J. A. Rikken and Y. A. R. R. Kessener, "Local field effects and electric and magnetic dipole transitions in dielectrics," Phys. Rev. Lett. 74, 880-883 (1995).
[CrossRef] [PubMed]

F. J. P. Schuurmans, D. T. N. de Lang, G. H. Wegdam, R. Sprik, and A. Lagendijk, "Local-field effects on spontaneous emission in a dense supercritical gas," Phys. Rev. Lett. 80, 5077-5080 (1998).
[CrossRef]

G. M. Kumar, D. N. Rao, and G. S. Agarwal, "Measurement of local field effects of the host on the lifetimes of embedded emitters," Phys. Rev. Lett. 91, 203903 (2003).
[CrossRef]

Z. Phys. D: At., Mol. Clusters (1)

V. M. Shalaev and M. I. Stockman, "Fractals: optical susceptibility and giant Raman scattering," Z. Phys. D: At., Mol. Clusters 10, 71-79 (1988).
[CrossRef]

Other (6)

P. R. Berman, ed., Cavity Quantum Electrodynamics (Academic, 1994).

H. A. Lorentz, Theory of Electrons, 2nd ed. (Teubner, 1916).

J. D. Jackson, Classical Electrodynamics (Wiley, 1962).

By "vacuum" we mean the radiative lifetime of an ion placed in the same chemical environment but for a medium of refractive index of unity.

In this paper we consider the Nd3+:YAG nanoparticles to be the emitters in our composite materials.

The composites containing Eu3+ embedded in a ligand cage (Refs. ) are fundamentally different from the sort of nanocomposite material considered in Ref. and in the present work.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SEM image of Nd : YAG nanopowder used in our studies.

Fig. 2
Fig. 2

Liquids used for suspending Nd : YAG nanoparticles with the corresponding refractive indices marked on the horizontal axis.

Fig. 3
Fig. 3

Typical fluorescence decay in the Nd : YAG nanopowder.

Fig. 4
Fig. 4

Experimentally measured radiative lifetimes of the Nd : YAG -nanopowder suspensions (points with error bars), and the best least-squares fits with various models (lines) under the assumption that the quantum yield of the nanopowder is (a) 1 and (b) 0.48.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A = 1 τ = 2 π V 12 ( ω 0 ) 2 ρ ( ω 0 ) .
V 12 L n eff ,
ρ ( ω 0 ) n eff 2 .
A = n eff L 2 A vac .
L = n 2 + 2 3
L = 3 n 2 2 n 2 + 1 .
n eff 2 n liq 2 n eff 2 + 2 n liq 2 = f YAG n YAG 2 n liq 2 n YAG 2 + 2 n liq 2
τ rad = τ rad ( vac ) n eff ( n eff 2 + 2 3 ) 2
τ rad = τ rad ( vac ) n eff ( 3 n eff 2 2 n eff 2 + 1 ) 2
τ rad = τ rad ( vac ) n eff .
1 τ measured = 1 τ rad + 1 τ nonrad .
η = A rad ( vac ) A rad ( vac ) + A nonrad

Metrics