Abstract

The mechanism of photoinduced anisotropy through photoisomerization has been studied by measuring photoinduced dichroism and birefringence in solgel silica-based glasses containing an azo dye (Disperse Red 1) and a plasticizer (carbazole). The equations commonly adopted to describe the molecular orientation (Sekkat’s theory) have been solved numerically and analytically within two different approximations. The results have been applied to photoinduced birefringence measured with expanded beams, and the dominant mechanisms driving the azo-dye molecular orientation in the investigated materials during both illumination and relaxation have been inferred. The experiments of photoinduced dichroism, performed with nonexpanded beams, suggest that the distribution of times describing the kinetics of the anisotropy formation, usually attributed to inhomogeneities in the chromophore environment, may be ascribed instead to the nonuniform profile of the beams.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Croutxé-Barghorn, M. Feuillade, C. Carré, L. Mager, and A. Fort, "Hybrid sol-gel gratings for optical and nonlinear optical applications," in Proc. SPIE 5827, 179-186 (2005).
    [CrossRef]
  2. C. Sanchez and B. Lebeau, Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites (Elsevier, 2004), pp. 1-5.
  3. Z. Sekkat, D. Yasumatsu, and S. Kawata, "Pure photoorientation of azo dye in polyurethanes and quantification of orientation of spectrally overlapping isomers," J. Phys. Chem. B 106, 12407-12417 (2002).
    [CrossRef]
  4. S. Sajti, A. Kerekes, P. S. Ramanujam, and E. Lorincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002).
    [CrossRef]
  5. A. D. Kiselev, "Kinetics of photoinduced anisotropy in azopolymers: models and mechanisms," J. Phys. Condens. Matter 14, 13417-13428 (2002).
    [CrossRef]
  6. Z. Sekkat and M. Dumont, "Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility," Synth. Met. 54, 373-381 (1993).
    [CrossRef]
  7. F. L. Labarthet, "Orientational manipulation of chromophores through photoisomerization," Ph.D. thesis (Université de Bordeaux I, 1998).
  8. A. C. Mitus, G. Pawlik, A. Miniewicz, and F. Kajzar, "Modeling of kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores: simple solvable model versus experiment and Monte Carlo simulations," in Proc. SPIE 5516, 72-78 (2004).
    [CrossRef]
  9. D. Brown, A. Natansohn, and P. Rochon, "Azo polymers for reversible optical storage. 5. Orientation and dipolar interactions of azobenzene side groups in copolymers and blends containing methyl methacrylate structural units," Macromolecules 28, 6116-6123 (1995).
    [CrossRef]
  10. Z. Sekkat, J. Wood, and W. Knoll, "Reorientation mechanism of azobenzenes within the trans-cis photoisomerization," J. Phys. Chem. 99, 17226-17234 (1995).
    [CrossRef]
  11. Z. Sekkat, "Photo-orientation by photoisomerization," in Photoreactive Organic Thin Films, Z.Sekkat and W.Knoll, eds. (Academic, Elsevier Science, 2002), Chap. 3.
    [CrossRef]
  12. P. Blanchard, "The linear and nonlinear optical properties of dye-doped polymer films," Ph.D. thesis (Reading University, 1993).
  13. R. Raschellà, "Photoinduced effects for holographic applications in hybrid sol-gel films," Ph.D. thesis (Università di Parma, 2006), see www.fis.unipr.it/home/marino/raschella.pdf.
  14. R. Loucif-Saibi, K. Nakatani, J. A. Delaire, and M. Dumont, "Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
    [CrossRef]
  15. S. Bian and M. G. Kuzyk, "Real-time holographic reflection gratings in volume media of azo-dye-doped poly(methyl methacrylate)," Opt. Lett. 27, 1761-1763 (2002).
    [CrossRef]
  16. R. Raschellà, I. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photorefractive gratings in DR1-doped hybrid sol-gel films," Opt. Mater. 25, 419-423 (2004).
    [CrossRef]
  17. I.-G. Marino, C. Razzetti, and P. P. Lottici, "Wide-field polarimetric analysis of photoinduced birefringence in azo-dye doped thin films: irradiance and time dependence," Appl. Phys. B (to be published)..
  18. R. Raschellà, I.-G. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photoinduced dichroism in dye-doped hybrid sol-gel films," Opt. Mater. 28, 909-912 (2006).
    [CrossRef]
  19. Z. Sekkat and W. Knoll, "Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady state and transient properties," J. Opt. Soc. Am. B 12, 1855-1867 (1995).
    [CrossRef]

2006 (1)

R. Raschellà, I.-G. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photoinduced dichroism in dye-doped hybrid sol-gel films," Opt. Mater. 28, 909-912 (2006).
[CrossRef]

2005 (1)

C. Croutxé-Barghorn, M. Feuillade, C. Carré, L. Mager, and A. Fort, "Hybrid sol-gel gratings for optical and nonlinear optical applications," in Proc. SPIE 5827, 179-186 (2005).
[CrossRef]

2004 (2)

A. C. Mitus, G. Pawlik, A. Miniewicz, and F. Kajzar, "Modeling of kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores: simple solvable model versus experiment and Monte Carlo simulations," in Proc. SPIE 5516, 72-78 (2004).
[CrossRef]

R. Raschellà, I. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photorefractive gratings in DR1-doped hybrid sol-gel films," Opt. Mater. 25, 419-423 (2004).
[CrossRef]

2002 (4)

S. Bian and M. G. Kuzyk, "Real-time holographic reflection gratings in volume media of azo-dye-doped poly(methyl methacrylate)," Opt. Lett. 27, 1761-1763 (2002).
[CrossRef]

Z. Sekkat, D. Yasumatsu, and S. Kawata, "Pure photoorientation of azo dye in polyurethanes and quantification of orientation of spectrally overlapping isomers," J. Phys. Chem. B 106, 12407-12417 (2002).
[CrossRef]

S. Sajti, A. Kerekes, P. S. Ramanujam, and E. Lorincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002).
[CrossRef]

A. D. Kiselev, "Kinetics of photoinduced anisotropy in azopolymers: models and mechanisms," J. Phys. Condens. Matter 14, 13417-13428 (2002).
[CrossRef]

1995 (3)

D. Brown, A. Natansohn, and P. Rochon, "Azo polymers for reversible optical storage. 5. Orientation and dipolar interactions of azobenzene side groups in copolymers and blends containing methyl methacrylate structural units," Macromolecules 28, 6116-6123 (1995).
[CrossRef]

Z. Sekkat, J. Wood, and W. Knoll, "Reorientation mechanism of azobenzenes within the trans-cis photoisomerization," J. Phys. Chem. 99, 17226-17234 (1995).
[CrossRef]

Z. Sekkat and W. Knoll, "Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady state and transient properties," J. Opt. Soc. Am. B 12, 1855-1867 (1995).
[CrossRef]

1993 (2)

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, and M. Dumont, "Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
[CrossRef]

Z. Sekkat and M. Dumont, "Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility," Synth. Met. 54, 373-381 (1993).
[CrossRef]

Bersani, D.

R. Raschellà, I.-G. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photoinduced dichroism in dye-doped hybrid sol-gel films," Opt. Mater. 28, 909-912 (2006).
[CrossRef]

R. Raschellà, I. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photorefractive gratings in DR1-doped hybrid sol-gel films," Opt. Mater. 25, 419-423 (2004).
[CrossRef]

Bian, S.

Blanchard, P.

P. Blanchard, "The linear and nonlinear optical properties of dye-doped polymer films," Ph.D. thesis (Reading University, 1993).

Brown, D.

D. Brown, A. Natansohn, and P. Rochon, "Azo polymers for reversible optical storage. 5. Orientation and dipolar interactions of azobenzene side groups in copolymers and blends containing methyl methacrylate structural units," Macromolecules 28, 6116-6123 (1995).
[CrossRef]

Carré, C.

C. Croutxé-Barghorn, M. Feuillade, C. Carré, L. Mager, and A. Fort, "Hybrid sol-gel gratings for optical and nonlinear optical applications," in Proc. SPIE 5827, 179-186 (2005).
[CrossRef]

Croutxé-Barghorn, C.

C. Croutxé-Barghorn, M. Feuillade, C. Carré, L. Mager, and A. Fort, "Hybrid sol-gel gratings for optical and nonlinear optical applications," in Proc. SPIE 5827, 179-186 (2005).
[CrossRef]

Delaire, J. A.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, and M. Dumont, "Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
[CrossRef]

Dumont, M.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, and M. Dumont, "Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
[CrossRef]

Z. Sekkat and M. Dumont, "Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility," Synth. Met. 54, 373-381 (1993).
[CrossRef]

Feuillade, M.

C. Croutxé-Barghorn, M. Feuillade, C. Carré, L. Mager, and A. Fort, "Hybrid sol-gel gratings for optical and nonlinear optical applications," in Proc. SPIE 5827, 179-186 (2005).
[CrossRef]

Fort, A.

C. Croutxé-Barghorn, M. Feuillade, C. Carré, L. Mager, and A. Fort, "Hybrid sol-gel gratings for optical and nonlinear optical applications," in Proc. SPIE 5827, 179-186 (2005).
[CrossRef]

Kajzar, F.

A. C. Mitus, G. Pawlik, A. Miniewicz, and F. Kajzar, "Modeling of kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores: simple solvable model versus experiment and Monte Carlo simulations," in Proc. SPIE 5516, 72-78 (2004).
[CrossRef]

Kawata, S.

Z. Sekkat, D. Yasumatsu, and S. Kawata, "Pure photoorientation of azo dye in polyurethanes and quantification of orientation of spectrally overlapping isomers," J. Phys. Chem. B 106, 12407-12417 (2002).
[CrossRef]

Kerekes, A.

S. Sajti, A. Kerekes, P. S. Ramanujam, and E. Lorincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002).
[CrossRef]

Kiselev, A. D.

A. D. Kiselev, "Kinetics of photoinduced anisotropy in azopolymers: models and mechanisms," J. Phys. Condens. Matter 14, 13417-13428 (2002).
[CrossRef]

Knoll, W.

Kuzyk, M. G.

Labarthet, F. L.

F. L. Labarthet, "Orientational manipulation of chromophores through photoisomerization," Ph.D. thesis (Université de Bordeaux I, 1998).

Lebeau, B.

C. Sanchez and B. Lebeau, Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites (Elsevier, 2004), pp. 1-5.

Lorenzi, A.

R. Raschellà, I.-G. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photoinduced dichroism in dye-doped hybrid sol-gel films," Opt. Mater. 28, 909-912 (2006).
[CrossRef]

R. Raschellà, I. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photorefractive gratings in DR1-doped hybrid sol-gel films," Opt. Mater. 25, 419-423 (2004).
[CrossRef]

Lorincz, E.

S. Sajti, A. Kerekes, P. S. Ramanujam, and E. Lorincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002).
[CrossRef]

Lottici, P.

R. Raschellà, I.-G. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photoinduced dichroism in dye-doped hybrid sol-gel films," Opt. Mater. 28, 909-912 (2006).
[CrossRef]

R. Raschellà, I. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photorefractive gratings in DR1-doped hybrid sol-gel films," Opt. Mater. 25, 419-423 (2004).
[CrossRef]

Lottici, P. P.

I.-G. Marino, C. Razzetti, and P. P. Lottici, "Wide-field polarimetric analysis of photoinduced birefringence in azo-dye doped thin films: irradiance and time dependence," Appl. Phys. B (to be published)..

Loucif-Saibi, R.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, and M. Dumont, "Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
[CrossRef]

Mager, L.

C. Croutxé-Barghorn, M. Feuillade, C. Carré, L. Mager, and A. Fort, "Hybrid sol-gel gratings for optical and nonlinear optical applications," in Proc. SPIE 5827, 179-186 (2005).
[CrossRef]

Marino, I.

R. Raschellà, I. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photorefractive gratings in DR1-doped hybrid sol-gel films," Opt. Mater. 25, 419-423 (2004).
[CrossRef]

Marino, I.-G.

R. Raschellà, I.-G. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photoinduced dichroism in dye-doped hybrid sol-gel films," Opt. Mater. 28, 909-912 (2006).
[CrossRef]

I.-G. Marino, C. Razzetti, and P. P. Lottici, "Wide-field polarimetric analysis of photoinduced birefringence in azo-dye doped thin films: irradiance and time dependence," Appl. Phys. B (to be published)..

Miniewicz, A.

A. C. Mitus, G. Pawlik, A. Miniewicz, and F. Kajzar, "Modeling of kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores: simple solvable model versus experiment and Monte Carlo simulations," in Proc. SPIE 5516, 72-78 (2004).
[CrossRef]

Mitus, A. C.

A. C. Mitus, G. Pawlik, A. Miniewicz, and F. Kajzar, "Modeling of kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores: simple solvable model versus experiment and Monte Carlo simulations," in Proc. SPIE 5516, 72-78 (2004).
[CrossRef]

Montenero, A.

R. Raschellà, I.-G. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photoinduced dichroism in dye-doped hybrid sol-gel films," Opt. Mater. 28, 909-912 (2006).
[CrossRef]

R. Raschellà, I. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photorefractive gratings in DR1-doped hybrid sol-gel films," Opt. Mater. 25, 419-423 (2004).
[CrossRef]

Nakatani, K.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, and M. Dumont, "Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
[CrossRef]

Natansohn, A.

D. Brown, A. Natansohn, and P. Rochon, "Azo polymers for reversible optical storage. 5. Orientation and dipolar interactions of azobenzene side groups in copolymers and blends containing methyl methacrylate structural units," Macromolecules 28, 6116-6123 (1995).
[CrossRef]

Pawlik, G.

A. C. Mitus, G. Pawlik, A. Miniewicz, and F. Kajzar, "Modeling of kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores: simple solvable model versus experiment and Monte Carlo simulations," in Proc. SPIE 5516, 72-78 (2004).
[CrossRef]

Ramanujam, P. S.

S. Sajti, A. Kerekes, P. S. Ramanujam, and E. Lorincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002).
[CrossRef]

Raschellà, R.

R. Raschellà, I.-G. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photoinduced dichroism in dye-doped hybrid sol-gel films," Opt. Mater. 28, 909-912 (2006).
[CrossRef]

R. Raschellà, I. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photorefractive gratings in DR1-doped hybrid sol-gel films," Opt. Mater. 25, 419-423 (2004).
[CrossRef]

R. Raschellà, "Photoinduced effects for holographic applications in hybrid sol-gel films," Ph.D. thesis (Università di Parma, 2006), see www.fis.unipr.it/home/marino/raschella.pdf.

Razzetti, C.

I.-G. Marino, C. Razzetti, and P. P. Lottici, "Wide-field polarimetric analysis of photoinduced birefringence in azo-dye doped thin films: irradiance and time dependence," Appl. Phys. B (to be published)..

Rochon, P.

D. Brown, A. Natansohn, and P. Rochon, "Azo polymers for reversible optical storage. 5. Orientation and dipolar interactions of azobenzene side groups in copolymers and blends containing methyl methacrylate structural units," Macromolecules 28, 6116-6123 (1995).
[CrossRef]

Sajti, S.

S. Sajti, A. Kerekes, P. S. Ramanujam, and E. Lorincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002).
[CrossRef]

Sanchez, C.

C. Sanchez and B. Lebeau, Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites (Elsevier, 2004), pp. 1-5.

Sekkat, Z.

Z. Sekkat, D. Yasumatsu, and S. Kawata, "Pure photoorientation of azo dye in polyurethanes and quantification of orientation of spectrally overlapping isomers," J. Phys. Chem. B 106, 12407-12417 (2002).
[CrossRef]

Z. Sekkat, J. Wood, and W. Knoll, "Reorientation mechanism of azobenzenes within the trans-cis photoisomerization," J. Phys. Chem. 99, 17226-17234 (1995).
[CrossRef]

Z. Sekkat and W. Knoll, "Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady state and transient properties," J. Opt. Soc. Am. B 12, 1855-1867 (1995).
[CrossRef]

Z. Sekkat and M. Dumont, "Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility," Synth. Met. 54, 373-381 (1993).
[CrossRef]

Z. Sekkat, "Photo-orientation by photoisomerization," in Photoreactive Organic Thin Films, Z.Sekkat and W.Knoll, eds. (Academic, Elsevier Science, 2002), Chap. 3.
[CrossRef]

Wood, J.

Z. Sekkat, J. Wood, and W. Knoll, "Reorientation mechanism of azobenzenes within the trans-cis photoisomerization," J. Phys. Chem. 99, 17226-17234 (1995).
[CrossRef]

Yasumatsu, D.

Z. Sekkat, D. Yasumatsu, and S. Kawata, "Pure photoorientation of azo dye in polyurethanes and quantification of orientation of spectrally overlapping isomers," J. Phys. Chem. B 106, 12407-12417 (2002).
[CrossRef]

Appl. Phys. B (1)

S. Sajti, A. Kerekes, P. S. Ramanujam, and E. Lorincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002).
[CrossRef]

Chem. Mater. (1)

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, and M. Dumont, "Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

Z. Sekkat, J. Wood, and W. Knoll, "Reorientation mechanism of azobenzenes within the trans-cis photoisomerization," J. Phys. Chem. 99, 17226-17234 (1995).
[CrossRef]

J. Phys. Chem. B (1)

Z. Sekkat, D. Yasumatsu, and S. Kawata, "Pure photoorientation of azo dye in polyurethanes and quantification of orientation of spectrally overlapping isomers," J. Phys. Chem. B 106, 12407-12417 (2002).
[CrossRef]

J. Phys. Condens. Matter (1)

A. D. Kiselev, "Kinetics of photoinduced anisotropy in azopolymers: models and mechanisms," J. Phys. Condens. Matter 14, 13417-13428 (2002).
[CrossRef]

Macromolecules (1)

D. Brown, A. Natansohn, and P. Rochon, "Azo polymers for reversible optical storage. 5. Orientation and dipolar interactions of azobenzene side groups in copolymers and blends containing methyl methacrylate structural units," Macromolecules 28, 6116-6123 (1995).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (2)

R. Raschellà, I. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photorefractive gratings in DR1-doped hybrid sol-gel films," Opt. Mater. 25, 419-423 (2004).
[CrossRef]

R. Raschellà, I.-G. Marino, P. Lottici, D. Bersani, A. Lorenzi, and A. Montenero, "Photoinduced dichroism in dye-doped hybrid sol-gel films," Opt. Mater. 28, 909-912 (2006).
[CrossRef]

Proc. SPIE (2)

A. C. Mitus, G. Pawlik, A. Miniewicz, and F. Kajzar, "Modeling of kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores: simple solvable model versus experiment and Monte Carlo simulations," in Proc. SPIE 5516, 72-78 (2004).
[CrossRef]

C. Croutxé-Barghorn, M. Feuillade, C. Carré, L. Mager, and A. Fort, "Hybrid sol-gel gratings for optical and nonlinear optical applications," in Proc. SPIE 5827, 179-186 (2005).
[CrossRef]

Synth. Met. (1)

Z. Sekkat and M. Dumont, "Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility," Synth. Met. 54, 373-381 (1993).
[CrossRef]

Other (6)

F. L. Labarthet, "Orientational manipulation of chromophores through photoisomerization," Ph.D. thesis (Université de Bordeaux I, 1998).

C. Sanchez and B. Lebeau, Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites (Elsevier, 2004), pp. 1-5.

I.-G. Marino, C. Razzetti, and P. P. Lottici, "Wide-field polarimetric analysis of photoinduced birefringence in azo-dye doped thin films: irradiance and time dependence," Appl. Phys. B (to be published)..

Z. Sekkat, "Photo-orientation by photoisomerization," in Photoreactive Organic Thin Films, Z.Sekkat and W.Knoll, eds. (Academic, Elsevier Science, 2002), Chap. 3.
[CrossRef]

P. Blanchard, "The linear and nonlinear optical properties of dye-doped polymer films," Ph.D. thesis (Reading University, 1993).

R. Raschellà, "Photoinduced effects for holographic applications in hybrid sol-gel films," Ph.D. thesis (Università di Parma, 2006), see www.fis.unipr.it/home/marino/raschella.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Two isomeric forms of Disperse Red 1.

Fig. 2
Fig. 2

Comparison between the absorbances A and A obtained from the solutions of Eq. (17) calculated numerically (circles) and analytically with a truncated Legendre expansion (curve). A and A are calculated from T 0 and T 2 by A = 2 T 2 + T 0 and A = T 0 T 2 . The agreement is good also for the solutions of Eqs. (3, 4) within the approximation A1.

Fig. 3
Fig. 3

Kinetics of T 2 during illumination according to Eqs. (10, 19), corresponding to the two approximations, A1 and A2, discussed in the text. The values for the simulation are Φ T = 0.11 , τ C = 7 s , and ϵ T = 7.8 × 10 19 cm 2 as reported in the literature,[13, 14, 15] for DR1 in poly(methyl methacrylate). D T = 4 × 10 4 s 1 as estimated from the fit of the anisotropy measured in our samples.

Fig. 4
Fig. 4

Setup for the photoinduced dichroism experiment. PLZ, polarizer; BS, beam splitter; M, mirror; Sh, shutters; S, sample; PBS, polarizing beam splitter; D, photodiodes.

Fig. 5
Fig. 5

Setup for the photoinduced birefringence experiment. PLZ, polarizers (PLZ1 at 45°, PLZ2 along p, and PLZ3 along s); Sh, shutters; S, sample; D, digital camera.

Fig. 6
Fig. 6

Kinetics of the anisotropy T 2 (circles) obtained from the dichroism experiments, during illumination. The fitting function (curve) is a stretched exponential.

Fig. 7
Fig. 7

Kinetics of the birefringence (circles) during (a) illumination and (b) the whole experiment. The fitting functions (curves) are generic biexponentials for both illumination and relaxation.

Fig. 8
Fig. 8

Kinetics of the birefringence (circles) during (a) illumination and (b) the whole experiment. The continuous curves are the functions found within the second approximation A2, Eqs. (19, 21). The time evolution during relaxation has been calculated with the parameters from the fit of the illumination with Eq. (19).

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

Δ n = α T 2 n N trans [ 3 cos 2 ( θ ) N T 1 ] 2 + α C 2 n N cis [ 3 cos 2 ( θ ) N C 1 ] 2 ,
Δ μ = ϵ T N A N trans [ 3 cos 2 ( θ ) N T 1 ] 2 + ϵ C N A N cis [ 3 cos 2 ( θ ) N C 1 ] 2 ,
d N T ( θ , t ) d t = σ T I cos 2 θ N T ( θ ) + σ C I θ N C ( θ ) cos 2 θ P C T ( θ θ ) sin θ d θ + 1 τ C θ N C ( θ ) Q ( θ θ ) sin θ d θ + D T R 2 N T ( θ ) ,
d N C ( θ , t ) d t = σ C I cos 2 θ N C ( θ ) + σ T I θ N T ( θ ) cos 2 θ P T C ( θ θ ) sin θ d θ 1 τ C N C ( θ ) + D C R 2 N C ( θ ) ,
T ( θ , t ) = N T ( θ , t ) N DR 1 = T 0 ( t ) + 5 T 2 ( t ) P 2 ( cos θ ) ,
C ( θ , t ) = N C ( θ , t ) N DR 1 = C 0 ( t ) + 5 C 2 ( t ) P 2 ( cos θ ) ,
Δ n = α 2 n N DR 1 T 2 ,
Δ μ = ϵ T N A N DR 1 T 2 ,
T 0 ( t ) = 1 2 ( k 1 σ I 3 7 ) exp ( k 1 t ) ( k 2 σ I 11 7 ) exp ( k 2 t ) ,
T 2 ( t ) = 1 5 [ exp ( k 1 t ) exp ( k 2 t ) ] ,
C 0 ( t ) = 1 T 0 ( t ) ,
C 2 ( t ) = P 2 T C T 2 ( t ) ,
T 0 ( t ) = 1 C 0 0 exp ( k t ) ,
T 2 ( t ) = T 2 0 exp ( k 3 t ) + k Q 2 C 2 0 k 3 k 4 [ exp ( k 4 t ) exp ( k 3 t ) ] ,
C 0 ( t ) = C 0 0 exp ( k t ) ,
C 2 ( t ) = C 2 0 exp ( k 4 t ) ,
d N T ( θ , t ) d t = I σ T cos 2 θ N T + 1 τ C ( N DR 1 1 2 0 π N T sin θ d θ ) + D T ( cos θ sin θ N T θ + 2 N T θ 2 ) ,
T 0 ( t ) = β + 5 k k 2 5 β ( k 2 k 1 ) ( b 5 k 1 ) exp ( k 1 t ) β + 5 k k 1 5 β ( k 2 k 1 ) ( b 5 k 2 ) exp ( k 2 t ) b k β ,
T 2 ( t ) = β + 5 k k 2 5 β ( k 2 k 1 ) 2 a exp ( k 1 t ) β + 5 k k 1 5 β ( k 2 k 1 ) 2 a exp ( k 2 t ) + 2 a k β ,
a = 1 3 I σ ,
b = I σ 55 21 + 30 D T ,
k = 1 τ C ,
β = 4 a 2 a b b k ,
Θ = b + 5 k + 5 a ,
k 1 = 1 10 ( Θ Θ 2 + 20 β ) ,
k 2 = 1 10 ( Θ + Θ 2 + 20 β ) .
T 0 ( t ) = ( T 0 0 1 ) exp ( k t ) + 1 ,
T 2 ( t ) = T 2 0 exp ( k 3 t ) ,

Metrics