Abstract

We investigate the effect of section lengths on the self-pulsation (SP) characteristics of a multisection index-coupled distributed feedback (DFB) laser that is composed of two spectrally detuned DFB sections and a phase-tuning section between them. Compound-cavity modes in multisection DFB lasers can be obtained by the concept of Fabry–Perot cavity modes. The simple equation for a CS number, which represents the number of compound-cavity modes within the stop-band width of a DFB section, is derived. By using the CS number, we were able to predict the SP characteristics such as abrupt changes of SP frequency due to mode hopping. Stable SP characteristics without abrupt changes of SP frequency for the variation of the spectral detuning and the phase shift in a phase-tuning section were obtained in cases with small CS numbers, which can be obtained by adjustment of section lengths.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Saruwatari, "All-optical signal processing for terabit/second optical transmission," IEEE J. Sel. Top. Quantum Electron. 6, 1363-1374 (2000).
    [CrossRef]
  2. C. Bornholdt, S. Bauer, M. Möhrle, H.-P. Nolting, and B. Sartorius, "All-optical clock recovery at 80 GHz and beyond," in Proceedings of European Conference on Optical Communication 2001 (ECOC2001) (ECOC, 2001), pp. 502-503.
  3. G. Grosskopf, D. Rohde, R. Eggemann, S. Bauer, C. Bornholdt, M. Möhrle, and B. Sartorius, "Optical millimeter-wave generation and wireless data transmission using a dual-mode laser," IEEE Photon. Technol. Lett. 12, 1692-1694 (2000).
    [CrossRef]
  4. I. Ogura, H. Kurita, T. Sasaki, and H. Yokoyama, "Precise operation-frequency control of monolithic mode-locked laser diodes for high-speed optical communication and all-optical signal processing," Opt. Quantum Electron. 33, 709-725 (2001).
    [CrossRef]
  5. M. Möhrle, B. Sartorius, C. Bornholdt, S. Bauer, O. Brox, A. Sigmund, R. Steingrüber, M. Radziunas, and H.-J. Wünsche, "Detuned grating multisection-RW-DFB lasers for high-speed optical signal processing," IEEE J. Sel. Top. Quantum Electron. 7, 217-223 (2001).
    [CrossRef]
  6. S. Nishikawa, M. Gotoda, T. Nishimura, and Y. Tokuda, "Coupling coefficient dependence on oscillation frequency stability of self-pulsating DFB laser diodes," Electron. Lett. 41, 41-42 (2005).
    [CrossRef]
  7. X. Wang, G. Li, J. Hong, and S. A. Pappert, "Spatiotemporal dynamics and high-frequency self-pulsations in two-section distributed feedback lasers," J. Opt. Soc. Am. B 16, 2030-2039 (1999).
    [CrossRef]
  8. H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Reheberg, "Mechanisms of fast self pulsations in two-section DFB lasers," IEEE J. Quantum Electron. 32, 69-78 (1996).
    [CrossRef]
  9. B.-S. Kim, Y. Chung, and J.-S. Lee, "An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes," IEEE J. Quantum Electron. 36, 787-794 (2000).
    [CrossRef]
  10. L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, "Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994).
    [CrossRef]
  11. J. E. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998), Chap. 7.
    [CrossRef]
  12. H.-S. Lee, H. K. Kim, B.-G. Kim, and B. Lee, "Systematic comparisons of the effects of the linewidth enhancement factor, confinement factor, internal loss and cavity length on the above-threshold characteristics of quarter-wavelength-shifted DFB lasers," Microwave Opt. Technol. Lett. 27, 396-400 (2000).
    [CrossRef]
  13. H.-J. Wünsche, M. Radziunas, S. Bauer, O. Brox, and B. Sartorius, "Modeling of mode control and noise in self-pulsating PhaseCOMB lasers," IEEE J. Sel. Top. Quantum Electron. 9, 857-864 (2003).
    [CrossRef]
  14. M. Kuznetsov, "Theory of wavelength tuning in two-segment distributed feedback lasers," IEEE J. Quantum Electron. 24, 1837-1844 (1998).
    [CrossRef]
  15. J. Willems, K. David, G. Morthier, and R. Baets, "Filter characteristics of DBR amplifier with index and gain coupling," Electron. Lett. 27, 831-833 (1991).
    [CrossRef]

2005 (1)

S. Nishikawa, M. Gotoda, T. Nishimura, and Y. Tokuda, "Coupling coefficient dependence on oscillation frequency stability of self-pulsating DFB laser diodes," Electron. Lett. 41, 41-42 (2005).
[CrossRef]

2003 (1)

H.-J. Wünsche, M. Radziunas, S. Bauer, O. Brox, and B. Sartorius, "Modeling of mode control and noise in self-pulsating PhaseCOMB lasers," IEEE J. Sel. Top. Quantum Electron. 9, 857-864 (2003).
[CrossRef]

2001 (2)

I. Ogura, H. Kurita, T. Sasaki, and H. Yokoyama, "Precise operation-frequency control of monolithic mode-locked laser diodes for high-speed optical communication and all-optical signal processing," Opt. Quantum Electron. 33, 709-725 (2001).
[CrossRef]

M. Möhrle, B. Sartorius, C. Bornholdt, S. Bauer, O. Brox, A. Sigmund, R. Steingrüber, M. Radziunas, and H.-J. Wünsche, "Detuned grating multisection-RW-DFB lasers for high-speed optical signal processing," IEEE J. Sel. Top. Quantum Electron. 7, 217-223 (2001).
[CrossRef]

2000 (4)

M. Saruwatari, "All-optical signal processing for terabit/second optical transmission," IEEE J. Sel. Top. Quantum Electron. 6, 1363-1374 (2000).
[CrossRef]

G. Grosskopf, D. Rohde, R. Eggemann, S. Bauer, C. Bornholdt, M. Möhrle, and B. Sartorius, "Optical millimeter-wave generation and wireless data transmission using a dual-mode laser," IEEE Photon. Technol. Lett. 12, 1692-1694 (2000).
[CrossRef]

B.-S. Kim, Y. Chung, and J.-S. Lee, "An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes," IEEE J. Quantum Electron. 36, 787-794 (2000).
[CrossRef]

H.-S. Lee, H. K. Kim, B.-G. Kim, and B. Lee, "Systematic comparisons of the effects of the linewidth enhancement factor, confinement factor, internal loss and cavity length on the above-threshold characteristics of quarter-wavelength-shifted DFB lasers," Microwave Opt. Technol. Lett. 27, 396-400 (2000).
[CrossRef]

1999 (1)

1998 (1)

M. Kuznetsov, "Theory of wavelength tuning in two-segment distributed feedback lasers," IEEE J. Quantum Electron. 24, 1837-1844 (1998).
[CrossRef]

1996 (1)

H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Reheberg, "Mechanisms of fast self pulsations in two-section DFB lasers," IEEE J. Quantum Electron. 32, 69-78 (1996).
[CrossRef]

1994 (1)

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, "Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994).
[CrossRef]

1991 (1)

J. Willems, K. David, G. Morthier, and R. Baets, "Filter characteristics of DBR amplifier with index and gain coupling," Electron. Lett. 27, 831-833 (1991).
[CrossRef]

Baets, R.

J. Willems, K. David, G. Morthier, and R. Baets, "Filter characteristics of DBR amplifier with index and gain coupling," Electron. Lett. 27, 831-833 (1991).
[CrossRef]

Bandelow, U.

H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Reheberg, "Mechanisms of fast self pulsations in two-section DFB lasers," IEEE J. Quantum Electron. 32, 69-78 (1996).
[CrossRef]

Bauer, S.

H.-J. Wünsche, M. Radziunas, S. Bauer, O. Brox, and B. Sartorius, "Modeling of mode control and noise in self-pulsating PhaseCOMB lasers," IEEE J. Sel. Top. Quantum Electron. 9, 857-864 (2003).
[CrossRef]

M. Möhrle, B. Sartorius, C. Bornholdt, S. Bauer, O. Brox, A. Sigmund, R. Steingrüber, M. Radziunas, and H.-J. Wünsche, "Detuned grating multisection-RW-DFB lasers for high-speed optical signal processing," IEEE J. Sel. Top. Quantum Electron. 7, 217-223 (2001).
[CrossRef]

G. Grosskopf, D. Rohde, R. Eggemann, S. Bauer, C. Bornholdt, M. Möhrle, and B. Sartorius, "Optical millimeter-wave generation and wireless data transmission using a dual-mode laser," IEEE Photon. Technol. Lett. 12, 1692-1694 (2000).
[CrossRef]

C. Bornholdt, S. Bauer, M. Möhrle, H.-P. Nolting, and B. Sartorius, "All-optical clock recovery at 80 GHz and beyond," in Proceedings of European Conference on Optical Communication 2001 (ECOC2001) (ECOC, 2001), pp. 502-503.

Bornholdt, C.

M. Möhrle, B. Sartorius, C. Bornholdt, S. Bauer, O. Brox, A. Sigmund, R. Steingrüber, M. Radziunas, and H.-J. Wünsche, "Detuned grating multisection-RW-DFB lasers for high-speed optical signal processing," IEEE J. Sel. Top. Quantum Electron. 7, 217-223 (2001).
[CrossRef]

G. Grosskopf, D. Rohde, R. Eggemann, S. Bauer, C. Bornholdt, M. Möhrle, and B. Sartorius, "Optical millimeter-wave generation and wireless data transmission using a dual-mode laser," IEEE Photon. Technol. Lett. 12, 1692-1694 (2000).
[CrossRef]

C. Bornholdt, S. Bauer, M. Möhrle, H.-P. Nolting, and B. Sartorius, "All-optical clock recovery at 80 GHz and beyond," in Proceedings of European Conference on Optical Communication 2001 (ECOC2001) (ECOC, 2001), pp. 502-503.

Brox, O.

H.-J. Wünsche, M. Radziunas, S. Bauer, O. Brox, and B. Sartorius, "Modeling of mode control and noise in self-pulsating PhaseCOMB lasers," IEEE J. Sel. Top. Quantum Electron. 9, 857-864 (2003).
[CrossRef]

M. Möhrle, B. Sartorius, C. Bornholdt, S. Bauer, O. Brox, A. Sigmund, R. Steingrüber, M. Radziunas, and H.-J. Wünsche, "Detuned grating multisection-RW-DFB lasers for high-speed optical signal processing," IEEE J. Sel. Top. Quantum Electron. 7, 217-223 (2001).
[CrossRef]

Carroll, J. E.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, "Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994).
[CrossRef]

J. E. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998), Chap. 7.
[CrossRef]

Chung, Y.

B.-S. Kim, Y. Chung, and J.-S. Lee, "An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes," IEEE J. Quantum Electron. 36, 787-794 (2000).
[CrossRef]

David, K.

J. Willems, K. David, G. Morthier, and R. Baets, "Filter characteristics of DBR amplifier with index and gain coupling," Electron. Lett. 27, 831-833 (1991).
[CrossRef]

Eggemann, R.

G. Grosskopf, D. Rohde, R. Eggemann, S. Bauer, C. Bornholdt, M. Möhrle, and B. Sartorius, "Optical millimeter-wave generation and wireless data transmission using a dual-mode laser," IEEE Photon. Technol. Lett. 12, 1692-1694 (2000).
[CrossRef]

Gotoda, M.

S. Nishikawa, M. Gotoda, T. Nishimura, and Y. Tokuda, "Coupling coefficient dependence on oscillation frequency stability of self-pulsating DFB laser diodes," Electron. Lett. 41, 41-42 (2005).
[CrossRef]

Grosskopf, G.

G. Grosskopf, D. Rohde, R. Eggemann, S. Bauer, C. Bornholdt, M. Möhrle, and B. Sartorius, "Optical millimeter-wave generation and wireless data transmission using a dual-mode laser," IEEE Photon. Technol. Lett. 12, 1692-1694 (2000).
[CrossRef]

Hong, J.

Kim, B.-G.

H.-S. Lee, H. K. Kim, B.-G. Kim, and B. Lee, "Systematic comparisons of the effects of the linewidth enhancement factor, confinement factor, internal loss and cavity length on the above-threshold characteristics of quarter-wavelength-shifted DFB lasers," Microwave Opt. Technol. Lett. 27, 396-400 (2000).
[CrossRef]

Kim, B.-S.

B.-S. Kim, Y. Chung, and J.-S. Lee, "An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes," IEEE J. Quantum Electron. 36, 787-794 (2000).
[CrossRef]

Kim, H. K.

H.-S. Lee, H. K. Kim, B.-G. Kim, and B. Lee, "Systematic comparisons of the effects of the linewidth enhancement factor, confinement factor, internal loss and cavity length on the above-threshold characteristics of quarter-wavelength-shifted DFB lasers," Microwave Opt. Technol. Lett. 27, 396-400 (2000).
[CrossRef]

Kurita, H.

I. Ogura, H. Kurita, T. Sasaki, and H. Yokoyama, "Precise operation-frequency control of monolithic mode-locked laser diodes for high-speed optical communication and all-optical signal processing," Opt. Quantum Electron. 33, 709-725 (2001).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov, "Theory of wavelength tuning in two-segment distributed feedback lasers," IEEE J. Quantum Electron. 24, 1837-1844 (1998).
[CrossRef]

Lee, B.

H.-S. Lee, H. K. Kim, B.-G. Kim, and B. Lee, "Systematic comparisons of the effects of the linewidth enhancement factor, confinement factor, internal loss and cavity length on the above-threshold characteristics of quarter-wavelength-shifted DFB lasers," Microwave Opt. Technol. Lett. 27, 396-400 (2000).
[CrossRef]

Lee, H.-S.

H.-S. Lee, H. K. Kim, B.-G. Kim, and B. Lee, "Systematic comparisons of the effects of the linewidth enhancement factor, confinement factor, internal loss and cavity length on the above-threshold characteristics of quarter-wavelength-shifted DFB lasers," Microwave Opt. Technol. Lett. 27, 396-400 (2000).
[CrossRef]

Lee, J.-S.

B.-S. Kim, Y. Chung, and J.-S. Lee, "An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes," IEEE J. Quantum Electron. 36, 787-794 (2000).
[CrossRef]

Li, G.

Marcenac, D. D.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, "Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994).
[CrossRef]

Möhrle, M.

M. Möhrle, B. Sartorius, C. Bornholdt, S. Bauer, O. Brox, A. Sigmund, R. Steingrüber, M. Radziunas, and H.-J. Wünsche, "Detuned grating multisection-RW-DFB lasers for high-speed optical signal processing," IEEE J. Sel. Top. Quantum Electron. 7, 217-223 (2001).
[CrossRef]

G. Grosskopf, D. Rohde, R. Eggemann, S. Bauer, C. Bornholdt, M. Möhrle, and B. Sartorius, "Optical millimeter-wave generation and wireless data transmission using a dual-mode laser," IEEE Photon. Technol. Lett. 12, 1692-1694 (2000).
[CrossRef]

C. Bornholdt, S. Bauer, M. Möhrle, H.-P. Nolting, and B. Sartorius, "All-optical clock recovery at 80 GHz and beyond," in Proceedings of European Conference on Optical Communication 2001 (ECOC2001) (ECOC, 2001), pp. 502-503.

Morthier, G.

J. Willems, K. David, G. Morthier, and R. Baets, "Filter characteristics of DBR amplifier with index and gain coupling," Electron. Lett. 27, 831-833 (1991).
[CrossRef]

Nishikawa, S.

S. Nishikawa, M. Gotoda, T. Nishimura, and Y. Tokuda, "Coupling coefficient dependence on oscillation frequency stability of self-pulsating DFB laser diodes," Electron. Lett. 41, 41-42 (2005).
[CrossRef]

Nishimura, T.

S. Nishikawa, M. Gotoda, T. Nishimura, and Y. Tokuda, "Coupling coefficient dependence on oscillation frequency stability of self-pulsating DFB laser diodes," Electron. Lett. 41, 41-42 (2005).
[CrossRef]

Nolting, H.-P.

C. Bornholdt, S. Bauer, M. Möhrle, H.-P. Nolting, and B. Sartorius, "All-optical clock recovery at 80 GHz and beyond," in Proceedings of European Conference on Optical Communication 2001 (ECOC2001) (ECOC, 2001), pp. 502-503.

Nowell, M. C.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, "Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994).
[CrossRef]

Ogura, I.

I. Ogura, H. Kurita, T. Sasaki, and H. Yokoyama, "Precise operation-frequency control of monolithic mode-locked laser diodes for high-speed optical communication and all-optical signal processing," Opt. Quantum Electron. 33, 709-725 (2001).
[CrossRef]

Pappert, S. A.

Plumb, D.

J. E. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998), Chap. 7.
[CrossRef]

Plumb, R. G. S.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, "Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994).
[CrossRef]

Radziunas, M.

H.-J. Wünsche, M. Radziunas, S. Bauer, O. Brox, and B. Sartorius, "Modeling of mode control and noise in self-pulsating PhaseCOMB lasers," IEEE J. Sel. Top. Quantum Electron. 9, 857-864 (2003).
[CrossRef]

M. Möhrle, B. Sartorius, C. Bornholdt, S. Bauer, O. Brox, A. Sigmund, R. Steingrüber, M. Radziunas, and H.-J. Wünsche, "Detuned grating multisection-RW-DFB lasers for high-speed optical signal processing," IEEE J. Sel. Top. Quantum Electron. 7, 217-223 (2001).
[CrossRef]

Reheberg, J.

H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Reheberg, "Mechanisms of fast self pulsations in two-section DFB lasers," IEEE J. Quantum Electron. 32, 69-78 (1996).
[CrossRef]

Rohde, D.

G. Grosskopf, D. Rohde, R. Eggemann, S. Bauer, C. Bornholdt, M. Möhrle, and B. Sartorius, "Optical millimeter-wave generation and wireless data transmission using a dual-mode laser," IEEE Photon. Technol. Lett. 12, 1692-1694 (2000).
[CrossRef]

Sartorius, B.

H.-J. Wünsche, M. Radziunas, S. Bauer, O. Brox, and B. Sartorius, "Modeling of mode control and noise in self-pulsating PhaseCOMB lasers," IEEE J. Sel. Top. Quantum Electron. 9, 857-864 (2003).
[CrossRef]

M. Möhrle, B. Sartorius, C. Bornholdt, S. Bauer, O. Brox, A. Sigmund, R. Steingrüber, M. Radziunas, and H.-J. Wünsche, "Detuned grating multisection-RW-DFB lasers for high-speed optical signal processing," IEEE J. Sel. Top. Quantum Electron. 7, 217-223 (2001).
[CrossRef]

G. Grosskopf, D. Rohde, R. Eggemann, S. Bauer, C. Bornholdt, M. Möhrle, and B. Sartorius, "Optical millimeter-wave generation and wireless data transmission using a dual-mode laser," IEEE Photon. Technol. Lett. 12, 1692-1694 (2000).
[CrossRef]

C. Bornholdt, S. Bauer, M. Möhrle, H.-P. Nolting, and B. Sartorius, "All-optical clock recovery at 80 GHz and beyond," in Proceedings of European Conference on Optical Communication 2001 (ECOC2001) (ECOC, 2001), pp. 502-503.

Saruwatari, M.

M. Saruwatari, "All-optical signal processing for terabit/second optical transmission," IEEE J. Sel. Top. Quantum Electron. 6, 1363-1374 (2000).
[CrossRef]

Sasaki, T.

I. Ogura, H. Kurita, T. Sasaki, and H. Yokoyama, "Precise operation-frequency control of monolithic mode-locked laser diodes for high-speed optical communication and all-optical signal processing," Opt. Quantum Electron. 33, 709-725 (2001).
[CrossRef]

Sigmund, A.

M. Möhrle, B. Sartorius, C. Bornholdt, S. Bauer, O. Brox, A. Sigmund, R. Steingrüber, M. Radziunas, and H.-J. Wünsche, "Detuned grating multisection-RW-DFB lasers for high-speed optical signal processing," IEEE J. Sel. Top. Quantum Electron. 7, 217-223 (2001).
[CrossRef]

Steingrüber, R.

M. Möhrle, B. Sartorius, C. Bornholdt, S. Bauer, O. Brox, A. Sigmund, R. Steingrüber, M. Radziunas, and H.-J. Wünsche, "Detuned grating multisection-RW-DFB lasers for high-speed optical signal processing," IEEE J. Sel. Top. Quantum Electron. 7, 217-223 (2001).
[CrossRef]

Tokuda, Y.

S. Nishikawa, M. Gotoda, T. Nishimura, and Y. Tokuda, "Coupling coefficient dependence on oscillation frequency stability of self-pulsating DFB laser diodes," Electron. Lett. 41, 41-42 (2005).
[CrossRef]

Wang, X.

Wenzel, H.

H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Reheberg, "Mechanisms of fast self pulsations in two-section DFB lasers," IEEE J. Quantum Electron. 32, 69-78 (1996).
[CrossRef]

Whiteaway, J.

J. E. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998), Chap. 7.
[CrossRef]

Willems, J.

J. Willems, K. David, G. Morthier, and R. Baets, "Filter characteristics of DBR amplifier with index and gain coupling," Electron. Lett. 27, 831-833 (1991).
[CrossRef]

Wunsche, H. J.

H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Reheberg, "Mechanisms of fast self pulsations in two-section DFB lasers," IEEE J. Quantum Electron. 32, 69-78 (1996).
[CrossRef]

Wünsche, H.-J.

H.-J. Wünsche, M. Radziunas, S. Bauer, O. Brox, and B. Sartorius, "Modeling of mode control and noise in self-pulsating PhaseCOMB lasers," IEEE J. Sel. Top. Quantum Electron. 9, 857-864 (2003).
[CrossRef]

M. Möhrle, B. Sartorius, C. Bornholdt, S. Bauer, O. Brox, A. Sigmund, R. Steingrüber, M. Radziunas, and H.-J. Wünsche, "Detuned grating multisection-RW-DFB lasers for high-speed optical signal processing," IEEE J. Sel. Top. Quantum Electron. 7, 217-223 (2001).
[CrossRef]

Yokoyama, H.

I. Ogura, H. Kurita, T. Sasaki, and H. Yokoyama, "Precise operation-frequency control of monolithic mode-locked laser diodes for high-speed optical communication and all-optical signal processing," Opt. Quantum Electron. 33, 709-725 (2001).
[CrossRef]

Yu, S. F.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, "Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994).
[CrossRef]

Zhang, L. M.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, "Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994).
[CrossRef]

Electron. Lett. (2)

S. Nishikawa, M. Gotoda, T. Nishimura, and Y. Tokuda, "Coupling coefficient dependence on oscillation frequency stability of self-pulsating DFB laser diodes," Electron. Lett. 41, 41-42 (2005).
[CrossRef]

J. Willems, K. David, G. Morthier, and R. Baets, "Filter characteristics of DBR amplifier with index and gain coupling," Electron. Lett. 27, 831-833 (1991).
[CrossRef]

IEEE J. Quantum Electron. (4)

M. Kuznetsov, "Theory of wavelength tuning in two-segment distributed feedback lasers," IEEE J. Quantum Electron. 24, 1837-1844 (1998).
[CrossRef]

H. Wenzel, U. Bandelow, H. J. Wunsche, and J. Reheberg, "Mechanisms of fast self pulsations in two-section DFB lasers," IEEE J. Quantum Electron. 32, 69-78 (1996).
[CrossRef]

B.-S. Kim, Y. Chung, and J.-S. Lee, "An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes," IEEE J. Quantum Electron. 36, 787-794 (2000).
[CrossRef]

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, "Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

M. Saruwatari, "All-optical signal processing for terabit/second optical transmission," IEEE J. Sel. Top. Quantum Electron. 6, 1363-1374 (2000).
[CrossRef]

H.-J. Wünsche, M. Radziunas, S. Bauer, O. Brox, and B. Sartorius, "Modeling of mode control and noise in self-pulsating PhaseCOMB lasers," IEEE J. Sel. Top. Quantum Electron. 9, 857-864 (2003).
[CrossRef]

M. Möhrle, B. Sartorius, C. Bornholdt, S. Bauer, O. Brox, A. Sigmund, R. Steingrüber, M. Radziunas, and H.-J. Wünsche, "Detuned grating multisection-RW-DFB lasers for high-speed optical signal processing," IEEE J. Sel. Top. Quantum Electron. 7, 217-223 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Grosskopf, D. Rohde, R. Eggemann, S. Bauer, C. Bornholdt, M. Möhrle, and B. Sartorius, "Optical millimeter-wave generation and wireless data transmission using a dual-mode laser," IEEE Photon. Technol. Lett. 12, 1692-1694 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

H.-S. Lee, H. K. Kim, B.-G. Kim, and B. Lee, "Systematic comparisons of the effects of the linewidth enhancement factor, confinement factor, internal loss and cavity length on the above-threshold characteristics of quarter-wavelength-shifted DFB lasers," Microwave Opt. Technol. Lett. 27, 396-400 (2000).
[CrossRef]

Opt. Quantum Electron. (1)

I. Ogura, H. Kurita, T. Sasaki, and H. Yokoyama, "Precise operation-frequency control of monolithic mode-locked laser diodes for high-speed optical communication and all-optical signal processing," Opt. Quantum Electron. 33, 709-725 (2001).
[CrossRef]

Other (2)

C. Bornholdt, S. Bauer, M. Möhrle, H.-P. Nolting, and B. Sartorius, "All-optical clock recovery at 80 GHz and beyond," in Proceedings of European Conference on Optical Communication 2001 (ECOC2001) (ECOC, 2001), pp. 502-503.

J. E. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998), Chap. 7.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of a multisection DFB laser that is composed of two spectrally detuned DFB sections and a phase-tuning section between them. AR, antireflection coating.

Fig. 2
Fig. 2

Reflectivity spectra of both DFB sections. (a) Overlapped stop bands ( Δ λ B < Δ ) and (b) separated stop bands ( Δ λ B > Δ ) .

Fig. 3
Fig. 3

(a) SP frequency and (b) lasing wavelength as a function of Δ λ B . Dashed lines in (a) and (b) indicate the SP frequency given by + 1 and 2 modes and the wavelength of long- (+) and short-(−) wavelength modes when the two DFB sections operate as lasers independently of each other. Solid curves in Fig. 3b indicate the trace of compound-cavity modes.

Fig. 4
Fig. 4

Normalized SP frequency and lasing wavelength for several lengths of a DFB section as a function of the normalized detuning. κ L D = 2 and L p = 300 μ m . (a), (c), and (e) show normalized SP frequency for L D = 200 , 300, and 500 μ m , respectively. (b), (d), and (f) show lasing wavelength for L D = 200 , 300, and 500 μ m , respectively.

Fig. 5
Fig. 5

SP frequency for several lengths of a DFB section as a function of the phase shift in a phase-tuning section. Δ λ B Δ = 0.6 , κ L D = 2 , and L p = 300 μ m .

Fig. 6
Fig. 6

Normalized SP frequency and lasing wavelength for several lengths of a phase-tuning section as a function of the normalized detuning. κ L D = 2 and L D = 300 μ m . (a), (c), and (e) show normalized SP frequency for L p = 100 , 300, and 600 μ m , respectively. (b), (d), and (f) show lasing wavelength for L p = 100 , 300, and 600 μ m , respectively.

Fig. 7
Fig. 7

SP frequency for several lengths of a phase-tuning section as a function of the phase shift in a phase-tuning section. Δ λ B Δ = 0.6 , κ L D = 2 , and L D = 300 μ m .

Tables (1)

Tables Icon

Table 1 Parameters for Multisection DFB Lasers

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1 v g a ± ( z , t ) t ± a ± ( z , t ) z = ( g 2 α 2 i δ ) a ± ( z , t ) j κ a ( z , t ) + F ± ( z , t ) ,
d N ( z , t ) d t = I q V A N ( z , t ) B N ( z , t ) 2 C N ( z , t ) 3 v g g N [ N ( z , t ) N 0 ] S ( z , t ) 1 + ϵ S ( z , t ) ,
δ 1 , 2 = 2 π n ¯ 1 , 2 λ π Λ 0 1 2 Γ α H g N ( N 1 , 2 N 0 ) + π Λ 1 , 2 π Λ 0 ,
δ λ = λ 0 2 2 n g ( 2 L e + L p ) ,
Δ = λ 0 2 n ¯ π κ L D 2 tanh ( κ L D ) 1 L D ,
Δ δ λ = 1 + κ L p tanh ( κ L D ) .

Metrics