Abstract

Strong fiber Bragg gratings (FBGs) with high-temperature sustainability were fabricated by writing the gratings into several specially developed photosensitive fibers. The thermal decay characteristics of these gratings were investigated over a temperature range from room temperature to 950°C. A cation-hopping model is presented to account for the obvious differences between the FBGs in terms of their thermal properties. A related cation-oriented trap distribution model is also used to simulate the decay properties of the gratings during high-temperature annealing and is found to yield a good fit to the experimental data. An accurate operating lifetime of these specially fabricated gratings can be predicted by using the cation-oriented trap distribution simulation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, "Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber," J. Lightwave Technol. 15, 1470-1477 (1997).
    [CrossRef]
  2. G. Brambilla, V. Pruneri, and L. Reekie, "Photorefractive index gratings in SnO2:SiO2 optical fibers," Appl. Phys. Lett. 76, 807-809 (2000).
    [CrossRef]
  3. Y. Shen, T. Sun, K. T. V. Grattan, and M. Sun, "Highly photosensitive Sb/Er/Ge codoped silica fiber for fiber Bragg grating (FBG) writing with strong high-temperature sustainability," Opt. Lett. 28, 2025-2027 (2003).
    [CrossRef] [PubMed]
  4. Y. Shen, J. He, T. Sun, and K. T. V. Grattan, "High temperature sustainability of strong FBGs written into Sb/Ge co-doped photosensitive fiber--decay mechanisms involved during annealing," Opt. Lett. 29, 554-556 (2004).
    [CrossRef] [PubMed]
  5. Y. Shen, J. Xia, T. Sun, and K. T. V. Grattan, "Photosensitive indium doped germano-silica fiber for strong FBGs with high temperature sustainability," IEEE Photonics Technol. Lett. 16, 1319-1321 (2004).
    [CrossRef]
  6. E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibres prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
    [CrossRef]
  7. O. V. Butov, E. M. Dianov, and K. M. Golant, "Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures," Meas. Sci. Technol. 17, 975-979 (2006).
    [CrossRef]
  8. M. Fokine, "Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers," Opt. Lett. 27, 1974-1976 (2002).
    [CrossRef]
  9. M. Fokine, "Formation of thermally stable chemical composition gratings in optical fibers," J. Opt. Soc. Am. B 19, 1759-1765 (2002).
    [CrossRef]
  10. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, and J. Unruh, "Fiber Bragg gratings made with a phase mask and 800 nm femtosecond radiation," Opt. Lett. 28, 995-997 (2003).
    [CrossRef] [PubMed]
  11. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, "Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask," J. Lightwave Technol. 22, 94-100 (2004).
    [CrossRef]
  12. S. Pal, Y. Shen, J. Mandal, T. Sun, and K. T. V. Grattan, "Simultaneous measurement of strain and temperature using a combined Sb-Er-Ge codoped fiber fluorescence and grating-based technique," IEEE Sens. J. 5, 1462-1468 (2005).
    [CrossRef]
  13. J. Mandal, Y. Shen, S. Pal, T. Sun, K. T. V. Grattan, and A. Augousti, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
    [CrossRef]
  14. Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, "Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range" (Submitted to Opt. Express).
  15. H. Hosono and Y. Abe, "Nature and origin of the 5-eV band in SiO2:GeO2 glasses," Phys. Rev. B 46, 11445-11451 (1992).
    [CrossRef]
  16. N. M. Lawandy, "Light induced transport and delocalization in transparent amorphous systems," Opt. Commun. 74, 180-184 (1989).
    [CrossRef]
  17. M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
    [CrossRef]
  18. H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, "Compaction- and photoelastic-induced index changes in fiber Bragg gratings," Appl. Phys. Lett. 68, 3069-3071 (1996).
    [CrossRef]
  19. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
    [CrossRef]
  20. J. Rathje, M. Kristensen, and J. E. Pedersen, "Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings," J. Appl. Phys. 88, 1050-1055 (2000).
    [CrossRef]
  21. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech, 1999).
  22. Y. Shen, S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, "Investigation on the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers," Opt. Commun. 237, 301-308 (2004).
    [CrossRef]
  23. A. M. James and M. P. Lord, Macmillan's Chemical and Physical Data (Macmillan, 1992).
  24. W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, and M. Monerie, "Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibers," Opt. Commun. 104, 185-195 (1993).
    [CrossRef]
  25. J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau, S. J. Mihailov, N. F. Borrelli, and J. Amin, "Bragg gratings in defect-free germanium-doped optical fibers," Opt. Lett. 24, 1266-1268 (1999).
    [CrossRef]
  26. H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, "Annealing of Bragg gratings in hydrogen-loaded optical fiber," J. Appl. Phys. 78, 2940-2945 (1995).
    [CrossRef]
  27. S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, "Thermal stability analysis of UV-induced fiber Bragg gratings," J. Lightwave Technol. 15, 1478-1483 (1997).
    [CrossRef]
  28. K. E. Chisholm, K. Sugden, and I. Bennion, "Effects of thermal annealing on Bragg fiber gratings in boron/germania co-doped fibre," J. Phys. D 31, 61-64 (1998).
    [CrossRef]
  29. N. Groothoff and J. Canning, "Enhanced type IIA gratings for high-temperature operation," Opt. Lett. 29, 2360-2362 (2004).
    [CrossRef] [PubMed]

2006 (1)

O. V. Butov, E. M. Dianov, and K. M. Golant, "Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures," Meas. Sci. Technol. 17, 975-979 (2006).
[CrossRef]

2005 (2)

S. Pal, Y. Shen, J. Mandal, T. Sun, and K. T. V. Grattan, "Simultaneous measurement of strain and temperature using a combined Sb-Er-Ge codoped fiber fluorescence and grating-based technique," IEEE Sens. J. 5, 1462-1468 (2005).
[CrossRef]

J. Mandal, Y. Shen, S. Pal, T. Sun, K. T. V. Grattan, and A. Augousti, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
[CrossRef]

2004 (5)

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, "Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask," J. Lightwave Technol. 22, 94-100 (2004).
[CrossRef]

Y. Shen, J. He, T. Sun, and K. T. V. Grattan, "High temperature sustainability of strong FBGs written into Sb/Ge co-doped photosensitive fiber--decay mechanisms involved during annealing," Opt. Lett. 29, 554-556 (2004).
[CrossRef] [PubMed]

Y. Shen, J. Xia, T. Sun, and K. T. V. Grattan, "Photosensitive indium doped germano-silica fiber for strong FBGs with high temperature sustainability," IEEE Photonics Technol. Lett. 16, 1319-1321 (2004).
[CrossRef]

Y. Shen, S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, "Investigation on the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers," Opt. Commun. 237, 301-308 (2004).
[CrossRef]

N. Groothoff and J. Canning, "Enhanced type IIA gratings for high-temperature operation," Opt. Lett. 29, 2360-2362 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (2)

2000 (2)

G. Brambilla, V. Pruneri, and L. Reekie, "Photorefractive index gratings in SnO2:SiO2 optical fibers," Appl. Phys. Lett. 76, 807-809 (2000).
[CrossRef]

J. Rathje, M. Kristensen, and J. E. Pedersen, "Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings," J. Appl. Phys. 88, 1050-1055 (2000).
[CrossRef]

1999 (1)

1998 (1)

K. E. Chisholm, K. Sugden, and I. Bennion, "Effects of thermal annealing on Bragg fiber gratings in boron/germania co-doped fibre," J. Phys. D 31, 61-64 (1998).
[CrossRef]

1997 (3)

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, "Thermal stability analysis of UV-induced fiber Bragg gratings," J. Lightwave Technol. 15, 1478-1483 (1997).
[CrossRef]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, "Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber," J. Lightwave Technol. 15, 1470-1477 (1997).
[CrossRef]

1996 (1)

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, "Compaction- and photoelastic-induced index changes in fiber Bragg gratings," Appl. Phys. Lett. 68, 3069-3071 (1996).
[CrossRef]

1995 (2)

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibres prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, "Annealing of Bragg gratings in hydrogen-loaded optical fiber," J. Appl. Phys. 78, 2940-2945 (1995).
[CrossRef]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

1993 (1)

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, and M. Monerie, "Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

1992 (1)

H. Hosono and Y. Abe, "Nature and origin of the 5-eV band in SiO2:GeO2 glasses," Phys. Rev. B 46, 11445-11451 (1992).
[CrossRef]

1989 (1)

N. M. Lawandy, "Light induced transport and delocalization in transparent amorphous systems," Opt. Commun. 74, 180-184 (1989).
[CrossRef]

Abe, Y.

H. Hosono and Y. Abe, "Nature and origin of the 5-eV band in SiO2:GeO2 glasses," Phys. Rev. B 46, 11445-11451 (1992).
[CrossRef]

Albert, J.

Amin, J.

Augousti, A.

J. Mandal, Y. Shen, S. Pal, T. Sun, K. T. V. Grattan, and A. Augousti, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
[CrossRef]

Baker, S. R.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, "Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber," J. Lightwave Technol. 15, 1470-1477 (1997).
[CrossRef]

Baker, V.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, "Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber," J. Lightwave Technol. 15, 1470-1477 (1997).
[CrossRef]

Baxter, G. W.

Y. Shen, S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, "Investigation on the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers," Opt. Commun. 237, 301-308 (2004).
[CrossRef]

Bayon, J. F.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, and M. Monerie, "Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Bennion, I.

K. E. Chisholm, K. Sugden, and I. Bennion, "Effects of thermal annealing on Bragg fiber gratings in boron/germania co-doped fibre," J. Phys. D 31, 61-64 (1998).
[CrossRef]

Bernage, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, and M. Monerie, "Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Bilodeau, F.

Borrelli, N. F.

Brambilla, G.

G. Brambilla, V. Pruneri, and L. Reekie, "Photorefractive index gratings in SnO2:SiO2 optical fibers," Appl. Phys. Lett. 76, 807-809 (2000).
[CrossRef]

Butov, O. V.

O. V. Butov, E. M. Dianov, and K. M. Golant, "Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures," Meas. Sci. Technol. 17, 975-979 (2006).
[CrossRef]

Canning, J.

Chen, S.

Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, "Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range" (Submitted to Opt. Express).

Chisholm, K. E.

K. E. Chisholm, K. Sugden, and I. Bennion, "Effects of thermal annealing on Bragg fiber gratings in boron/germania co-doped fibre," J. Phys. D 31, 61-64 (1998).
[CrossRef]

Cochet, F.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, "Compaction- and photoelastic-induced index changes in fiber Bragg gratings," Appl. Phys. Lett. 68, 3069-3071 (1996).
[CrossRef]

Collins, S. F.

Y. Shen, S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, "Investigation on the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers," Opt. Commun. 237, 301-308 (2004).
[CrossRef]

Cordier, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Delevaque, E.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Dianov, E. M.

O. V. Butov, E. M. Dianov, and K. M. Golant, "Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures," Meas. Sci. Technol. 17, 975-979 (2006).
[CrossRef]

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibres prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

Ding, H.

Dong, L.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Douay, M.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, and M. Monerie, "Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Dussardier, B.

Y. Shen, S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, "Investigation on the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers," Opt. Commun. 237, 301-308 (2004).
[CrossRef]

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Fokine, M.

Fonjallaz, P. Y.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, "Compaction- and photoelastic-induced index changes in fiber Bragg gratings," Appl. Phys. Lett. 68, 3069-3071 (1996).
[CrossRef]

Gallagher, M. D.

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, "Annealing of Bragg gratings in hydrogen-loaded optical fiber," J. Appl. Phys. 78, 2940-2945 (1995).
[CrossRef]

Georges, T.

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, and M. Monerie, "Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Gilbert, S. L.

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, "Annealing of Bragg gratings in hydrogen-loaded optical fiber," J. Appl. Phys. 78, 2940-2945 (1995).
[CrossRef]

Golant, K. M.

O. V. Butov, E. M. Dianov, and K. M. Golant, "Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures," Meas. Sci. Technol. 17, 975-979 (2006).
[CrossRef]

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibres prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

Goodchild, D.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, "Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber," J. Lightwave Technol. 15, 1470-1477 (1997).
[CrossRef]

Grattan, K. T. V.

S. Pal, Y. Shen, J. Mandal, T. Sun, and K. T. V. Grattan, "Simultaneous measurement of strain and temperature using a combined Sb-Er-Ge codoped fiber fluorescence and grating-based technique," IEEE Sens. J. 5, 1462-1468 (2005).
[CrossRef]

J. Mandal, Y. Shen, S. Pal, T. Sun, K. T. V. Grattan, and A. Augousti, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
[CrossRef]

Y. Shen, J. He, T. Sun, and K. T. V. Grattan, "High temperature sustainability of strong FBGs written into Sb/Ge co-doped photosensitive fiber--decay mechanisms involved during annealing," Opt. Lett. 29, 554-556 (2004).
[CrossRef] [PubMed]

Y. Shen, J. Xia, T. Sun, and K. T. V. Grattan, "Photosensitive indium doped germano-silica fiber for strong FBGs with high temperature sustainability," IEEE Photonics Technol. Lett. 16, 1319-1321 (2004).
[CrossRef]

Y. Shen, S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, "Investigation on the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers," Opt. Commun. 237, 301-308 (2004).
[CrossRef]

Y. Shen, T. Sun, K. T. V. Grattan, and M. Sun, "Highly photosensitive Sb/Er/Ge codoped silica fiber for fiber Bragg grating (FBG) writing with strong high-temperature sustainability," Opt. Lett. 28, 2025-2027 (2003).
[CrossRef] [PubMed]

Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, "Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range" (Submitted to Opt. Express).

Grobnic, D.

Groothoff, N.

Guo, J. Z. Y.

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, "Thermal stability analysis of UV-induced fiber Bragg gratings," J. Lightwave Technol. 15, 1478-1483 (1997).
[CrossRef]

He, J.

Hill, K. O.

Hosono, H.

H. Hosono and Y. Abe, "Nature and origin of the 5-eV band in SiO2:GeO2 glasses," Phys. Rev. B 46, 11445-11451 (1992).
[CrossRef]

James, A. M.

A. M. James and M. P. Lord, Macmillan's Chemical and Physical Data (Macmillan, 1992).

Johnson, D. C.

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech, 1999).

Kannan, S.

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, "Thermal stability analysis of UV-induced fiber Bragg gratings," J. Lightwave Technol. 15, 1478-1483 (1997).
[CrossRef]

Khrapko, R. R.

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibres prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

Kristensen, M.

J. Rathje, M. Kristensen, and J. E. Pedersen, "Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings," J. Appl. Phys. 88, 1050-1055 (2000).
[CrossRef]

Kurkov, A. S.

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibres prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, "Light induced transport and delocalization in transparent amorphous systems," Opt. Commun. 74, 180-184 (1989).
[CrossRef]

Lemaire, P. J.

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, "Thermal stability analysis of UV-induced fiber Bragg gratings," J. Lightwave Technol. 15, 1478-1483 (1997).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Lidgard, A.

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, "Annealing of Bragg gratings in hydrogen-loaded optical fiber," J. Appl. Phys. 78, 2940-2945 (1995).
[CrossRef]

Limberger, H. G.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, "Compaction- and photoelastic-induced index changes in fiber Bragg gratings," Appl. Phys. Lett. 68, 3069-3071 (1996).
[CrossRef]

Lord, M. P.

A. M. James and M. P. Lord, Macmillan's Chemical and Physical Data (Macmillan, 1992).

Lu, P.

Mandal, J.

J. Mandal, Y. Shen, S. Pal, T. Sun, K. T. V. Grattan, and A. Augousti, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
[CrossRef]

S. Pal, Y. Shen, J. Mandal, T. Sun, and K. T. V. Grattan, "Simultaneous measurement of strain and temperature using a combined Sb-Er-Ge codoped fiber fluorescence and grating-based technique," IEEE Sens. J. 5, 1462-1468 (2005).
[CrossRef]

Y. Shen, S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, "Investigation on the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers," Opt. Commun. 237, 301-308 (2004).
[CrossRef]

Mihailov, S. J.

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Monerie, M.

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, and M. Monerie, "Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Monnom, G.

Y. Shen, S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, "Investigation on the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers," Opt. Commun. 237, 301-308 (2004).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Niay, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, and M. Monerie, "Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech, 1999).

Pal, S.

S. Pal, Y. Shen, J. Mandal, T. Sun, and K. T. V. Grattan, "Simultaneous measurement of strain and temperature using a combined Sb-Er-Ge codoped fiber fluorescence and grating-based technique," IEEE Sens. J. 5, 1462-1468 (2005).
[CrossRef]

J. Mandal, Y. Shen, S. Pal, T. Sun, K. T. V. Grattan, and A. Augousti, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
[CrossRef]

Y. Shen, S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, "Investigation on the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers," Opt. Commun. 237, 301-308 (2004).
[CrossRef]

Patrick, H.

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, "Annealing of Bragg gratings in hydrogen-loaded optical fiber," J. Appl. Phys. 78, 2940-2945 (1995).
[CrossRef]

Pedersen, J. E.

J. Rathje, M. Kristensen, and J. E. Pedersen, "Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings," J. Appl. Phys. 88, 1050-1055 (2000).
[CrossRef]

Poignant, H.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Poumellec, B.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Pruneri, V.

G. Brambilla, V. Pruneri, and L. Reekie, "Photorefractive index gratings in SnO2:SiO2 optical fibers," Appl. Phys. Lett. 76, 807-809 (2000).
[CrossRef]

Qiu, Y.

Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, "Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range" (Submitted to Opt. Express).

Rathje, J.

J. Rathje, M. Kristensen, and J. E. Pedersen, "Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings," J. Appl. Phys. 88, 1050-1055 (2000).
[CrossRef]

Reekie, L.

G. Brambilla, V. Pruneri, and L. Reekie, "Photorefractive index gratings in SnO2:SiO2 optical fibers," Appl. Phys. Lett. 76, 807-809 (2000).
[CrossRef]

Rourke, H. N.

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, "Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber," J. Lightwave Technol. 15, 1470-1477 (1997).
[CrossRef]

Salathe, R. P.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, "Compaction- and photoelastic-induced index changes in fiber Bragg gratings," Appl. Phys. Lett. 68, 3069-3071 (1996).
[CrossRef]

Shen, Y.

J. Mandal, Y. Shen, S. Pal, T. Sun, K. T. V. Grattan, and A. Augousti, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
[CrossRef]

S. Pal, Y. Shen, J. Mandal, T. Sun, and K. T. V. Grattan, "Simultaneous measurement of strain and temperature using a combined Sb-Er-Ge codoped fiber fluorescence and grating-based technique," IEEE Sens. J. 5, 1462-1468 (2005).
[CrossRef]

Y. Shen, J. Xia, T. Sun, and K. T. V. Grattan, "Photosensitive indium doped germano-silica fiber for strong FBGs with high temperature sustainability," IEEE Photonics Technol. Lett. 16, 1319-1321 (2004).
[CrossRef]

Y. Shen, J. He, T. Sun, and K. T. V. Grattan, "High temperature sustainability of strong FBGs written into Sb/Ge co-doped photosensitive fiber--decay mechanisms involved during annealing," Opt. Lett. 29, 554-556 (2004).
[CrossRef] [PubMed]

Y. Shen, S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, "Investigation on the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers," Opt. Commun. 237, 301-308 (2004).
[CrossRef]

Y. Shen, T. Sun, K. T. V. Grattan, and M. Sun, "Highly photosensitive Sb/Er/Ge codoped silica fiber for fiber Bragg grating (FBG) writing with strong high-temperature sustainability," Opt. Lett. 28, 2025-2027 (2003).
[CrossRef] [PubMed]

Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, "Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range" (Submitted to Opt. Express).

Smelser, C. W.

Sugden, K.

K. E. Chisholm, K. Sugden, and I. Bennion, "Effects of thermal annealing on Bragg fiber gratings in boron/germania co-doped fibre," J. Phys. D 31, 61-64 (1998).
[CrossRef]

Sun, M.

Sun, T.

S. Pal, Y. Shen, J. Mandal, T. Sun, and K. T. V. Grattan, "Simultaneous measurement of strain and temperature using a combined Sb-Er-Ge codoped fiber fluorescence and grating-based technique," IEEE Sens. J. 5, 1462-1468 (2005).
[CrossRef]

J. Mandal, Y. Shen, S. Pal, T. Sun, K. T. V. Grattan, and A. Augousti, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
[CrossRef]

Y. Shen, J. He, T. Sun, and K. T. V. Grattan, "High temperature sustainability of strong FBGs written into Sb/Ge co-doped photosensitive fiber--decay mechanisms involved during annealing," Opt. Lett. 29, 554-556 (2004).
[CrossRef] [PubMed]

Y. Shen, J. Xia, T. Sun, and K. T. V. Grattan, "Photosensitive indium doped germano-silica fiber for strong FBGs with high temperature sustainability," IEEE Photonics Technol. Lett. 16, 1319-1321 (2004).
[CrossRef]

Y. Shen, S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, "Investigation on the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers," Opt. Commun. 237, 301-308 (2004).
[CrossRef]

Y. Shen, T. Sun, K. T. V. Grattan, and M. Sun, "Highly photosensitive Sb/Er/Ge codoped silica fiber for fiber Bragg grating (FBG) writing with strong high-temperature sustainability," Opt. Lett. 28, 2025-2027 (2003).
[CrossRef] [PubMed]

Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, "Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range" (Submitted to Opt. Express).

Taunay, T.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

Tomashuk, A. L.

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibres prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

Unruh, J.

Wade, S. A.

Y. Shen, S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, "Investigation on the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers," Opt. Commun. 237, 301-308 (2004).
[CrossRef]

Walker, R. B.

Wu, B.

Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, "Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range" (Submitted to Opt. Express).

Xia, J.

Y. Shen, J. Xia, T. Sun, and K. T. V. Grattan, "Photosensitive indium doped germano-silica fiber for strong FBGs with high temperature sustainability," IEEE Photonics Technol. Lett. 16, 1319-1321 (2004).
[CrossRef]

Xie, W. X.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, and M. Monerie, "Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Zhao, W.

Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, "Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range" (Submitted to Opt. Express).

Appl. Phys. Lett. (2)

G. Brambilla, V. Pruneri, and L. Reekie, "Photorefractive index gratings in SnO2:SiO2 optical fibers," Appl. Phys. Lett. 76, 807-809 (2000).
[CrossRef]

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, "Compaction- and photoelastic-induced index changes in fiber Bragg gratings," Appl. Phys. Lett. 68, 3069-3071 (1996).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

Y. Shen, J. Xia, T. Sun, and K. T. V. Grattan, "Photosensitive indium doped germano-silica fiber for strong FBGs with high temperature sustainability," IEEE Photonics Technol. Lett. 16, 1319-1321 (2004).
[CrossRef]

IEEE Sens. J. (1)

S. Pal, Y. Shen, J. Mandal, T. Sun, and K. T. V. Grattan, "Simultaneous measurement of strain and temperature using a combined Sb-Er-Ge codoped fiber fluorescence and grating-based technique," IEEE Sens. J. 5, 1462-1468 (2005).
[CrossRef]

J. Appl. Phys. (3)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

J. Rathje, M. Kristensen, and J. E. Pedersen, "Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings," J. Appl. Phys. 88, 1050-1055 (2000).
[CrossRef]

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, "Annealing of Bragg gratings in hydrogen-loaded optical fiber," J. Appl. Phys. 78, 2940-2945 (1995).
[CrossRef]

J. Lightwave Technol. (5)

S. Kannan, J. Z. Y. Guo, and P. J. Lemaire, "Thermal stability analysis of UV-induced fiber Bragg gratings," J. Lightwave Technol. 15, 1478-1483 (1997).
[CrossRef]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photosensitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, "Thermal decay of fibre Bragg gratings written in boron and germanium codoped silica fiber," J. Lightwave Technol. 15, 1470-1477 (1997).
[CrossRef]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, "Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask," J. Lightwave Technol. 22, 94-100 (2004).
[CrossRef]

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibres prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

K. E. Chisholm, K. Sugden, and I. Bennion, "Effects of thermal annealing on Bragg fiber gratings in boron/germania co-doped fibre," J. Phys. D 31, 61-64 (1998).
[CrossRef]

Meas. Sci. Technol. (1)

O. V. Butov, E. M. Dianov, and K. M. Golant, "Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures," Meas. Sci. Technol. 17, 975-979 (2006).
[CrossRef]

Opt. Commun. (4)

J. Mandal, Y. Shen, S. Pal, T. Sun, K. T. V. Grattan, and A. Augousti, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
[CrossRef]

N. M. Lawandy, "Light induced transport and delocalization in transparent amorphous systems," Opt. Commun. 74, 180-184 (1989).
[CrossRef]

Y. Shen, S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, and G. Monnom, "Investigation on the photosensitivity, temperature sustainability and fluorescence characteristics of several Er-doped photosensitive fibers," Opt. Commun. 237, 301-308 (2004).
[CrossRef]

W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, and M. Monerie, "Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibers," Opt. Commun. 104, 185-195 (1993).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. B (1)

H. Hosono and Y. Abe, "Nature and origin of the 5-eV band in SiO2:GeO2 glasses," Phys. Rev. B 46, 11445-11451 (1992).
[CrossRef]

Other (3)

A. M. James and M. P. Lord, Macmillan's Chemical and Physical Data (Macmillan, 1992).

Y. Shen, Y. Qiu, B. Wu, W. Zhao, S. Chen, T. Sun, and K. T. V. Grattan, "Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range" (Submitted to Opt. Express).

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Reflectivity ( R ) and refractive index modulation ( d n ) increase for FBGs written into Bi–Ge fiber and Sb–Ge fiber when using a UV excimer laser with parameters of 200 mJ cm 2 pulse and repetition rates of 200 and 300 Hz , respectively.

Fig. 2
Fig. 2

Typical transmission spectrum of an as-fabricated FBG written at 248 nm into a Bi–Ge-codoped silica fiber.

Fig. 3
Fig. 3

Annealing results for two FBGs (with laser parameters of 200 mJ cm 2 pulse and repetition rates of 200 and 300 Hz , respectively) written into the In–Ge fiber, with temperature from room temperature to 900 ° C , showing the change in reflectivity ( R ) and the refractive index modulation ( d n ) with temperature. For each symbol in the curves, the annealing period is 24 h .

Fig. 4
Fig. 4

Annealing results for FBGs (with laser parameters of 200 mJ cm 2 pulse and repetition rates of 200 Hz ) written into Sb–Ge, In–Ge, and Bi–Ge fibers, with temperature from room temperature to 900 ° C , showing the change in the normalized integrated coupling constant (ICC) with temperature. For each symbol in the curves, the annealing period is 24 h .

Fig. 5
Fig. 5

Reflectance spectra of an FBG written into the In–Ge fiber with parameters of 200 mJ cm 2 pulse and a repetition rate of 300 Hz , at temperatures of 950 ° C and 1000 ° C .

Fig. 6
Fig. 6

Demonstration of the three-stage aging decay curve for the computation of cation-oriented trap distributions. The aging decay curve at temperatures over 800 ° C was considered to be related only to Bi 3 + , while that at lower temperatures consisted of three parts, corresponding to Ge 4 + , Ge 2 + , and Bi 3 + .

Fig. 7
Fig. 7

Cation-oriented trap energy distribution for FBGs written into Sb–Ge and Bi–Ge fibers. For comparison, the trap energy distributions of the FBG when simulated by using the normal aging decay approach are also illustrated. The curve labeled “the whole T ” arises from the result simulated with data for all temperatures, while the curve labeled “the lower T ” arises from that obtained by using only data obtained below 600 ° C , with (a) for FBGs written into the Sb–Ge fiber and (b) for FBGs written into the Bi–Ge fiber.

Fig. 8
Fig. 8

Simulation results of the FBGs when annealed step by step. When compared with the actual decay data, it can be seen that the cation-oriented simulation gives a better fit over the whole temperature range: (a) for FBGs written into the Sb–Ge fiber and (b) for FBGs written into the Bi–Ge fiber.

Fig. 9
Fig. 9

Dependence of the normalized integrated coupling constant, η, on the demarcation energy, indicating the significant difference among the results of the three simulation methods at energies between 3.2 and 4.0 eV .

Fig. 10
Fig. 10

Annealing decay of three gratings written into the Bi–Ge fiber, showing the consistency between the experimental results and those predicted from the “cation-oriented” simulation curve (a) at 550 ° C for over three weeks and (b) at 650 ° C for ten days.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d n = [ λ π L n ( V ) ] tanh 1 ( R 1 2 ) ,
f i ( E , t ) = f i ( E ) exp [ ν i ( E ) t ] , i = 1 , 2 , 3 ,
ν i ( E ) = ν i exp ( E k B T ) ,
N ( t ) = i = 1 to 3 N i ( t ) = i = 1 to 3 0 g i ( E ) f i ( E , t ) d E ,
N ( t ) = i = 1 to 3 N i ( t ) = i = 1 to 3 E d g ̃ i ( E ) d E ,

Metrics