Abstract

We describe a method for efficiently and coherently converting photons from one wavelength to another through the process of nonlinear upconversion. By using an intense 1064nm escort laser pulse and a periodically poled lithium niobate (PPLN) crystal, we demonstrate upconversion efficiency of 99% and coherence of 95% for 1550to631nm light at the single-photon level, thereby qualifying it for use in manipulation of photonic qubits. We then show how to create photons in arbitrary superpositions of different energy states, thereby enlarging the accessible Hilbert space for quantum information applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
    [CrossRef]
  2. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
    [CrossRef]
  3. J. E. Midwinter, "Image conversion from 1.6 μm to the visible in lithium niobate," Appl. Phys. Lett. 12, 68-70 (1968).
    [CrossRef]
  4. K. F. Hulme and J. Warner, "Theory of thermal imaging using infrared to visible image up-conversion," Appl. Opt. 11, 2956-2964 (1972).
    [CrossRef] [PubMed]
  5. T. R. Gurski, H. W. Epps, and S. P. Maran, "Upconversion of broadband infrared spectra," Appl. Opt. 17, 1238-1242 (1978).
    [CrossRef] [PubMed]
  6. R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, "Broad-band fluorescence upconversion for femtosecond spectroscopy," Appl. Phys. Lett. 79, 566-568 (2001).
    [CrossRef]
  7. J. Warner, "Spatial resolution measurements in up-conversion from 10.6 μm to the visible," Appl. Phys. Lett. 13, 360-362 (1968).
    [CrossRef]
  8. F. V. Bright, "Modern molecular fluorescence spectroscopy," Appl. Spectrosc. 49, 14A-19A (1995).
    [CrossRef]
  9. M. M. Abbas, T. Kostiuk, and K. W. Ogilvie, "Infrared upconversion for astronomical applications," Appl. Opt. 15, 961-970 (1976).
    [CrossRef] [PubMed]
  10. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, "Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths," Opt. Lett. 29, 1518-1520 (2004).
    [CrossRef] [PubMed]
  11. M. A. Albota and F. N. C. Wong, "Efficient single-photon counting at 1.55 μm by means of frequency upconversion," Opt. Lett. 29, 1449-1451 (2004).
    [CrossRef] [PubMed]
  12. G. Giorgi, P. Mataloni, and F. De Martini, "Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits," Phys. Rev. Lett. 90, 027902 (2003).
    [CrossRef] [PubMed]
  13. K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, "Detection of mid-IR radiation by sum frequency generation for free space optical communication," Opt. Lasers Eng. 43, 537-544 (2005).
    [CrossRef]
  14. A. P. VanDevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 51, 1433-1445 (2004).
    [CrossRef]
  15. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, and M. M. Fejer, "Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30, 1725-1727 (2005).
    [CrossRef] [PubMed]
  16. K. Inoue, E. Waks, and Y. Yamamoto, "Differential phase shift quantum key distribution," Phys. Rev. Lett. 89, 037902 (2002).
    [CrossRef] [PubMed]
  17. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).
  18. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
    [CrossRef]
  19. J. Huang and P. Kumar, "Observation of quantum frequency conversion," Phys. Rev. Lett. 68, 2153-2156 (1992).
    [CrossRef] [PubMed]
  20. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, "A photonic quantum information interface," Nature 437, 116-120 (2005).
    [CrossRef] [PubMed]
  21. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102-2116 (1995).
    [CrossRef]
  22. D. T. Pegg and J. Jeffers, "Quantum nature of laser light," J. Mod. Opt. 52, 1835-1856 (2005).
    [CrossRef]
  23. R. J. Hughes, G. L. Morgan, and C. G. Peterson, "Quantum key distribution over a 48-km optical fiber network," J. Mod. Opt. 47, 533-547 (2000).
    [CrossRef]
  24. D. Stucki, N. G. O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41.1-41.8 (2002).
    [CrossRef]
  25. See MagiQ Technologies at http://www.magiqtech.com/.
  26. See id Quantique at http://www.idquantique.com/.
  27. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, "Generation of hyperentangled photon pairs," Phys. Rev. Lett. 95, 260501 (2005).
    [CrossRef]
  28. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, "Quantum secure direct communication with high-dimension quantum superdense coding," Phys. Rev. A 71, 044305 (2005).
    [CrossRef]
  29. D. A. Farías and J. N. Eckstein, "Dynamic electrooptic frequency shifter for pulsed light signals," IEEE J. Quantum Electron. 41, 94-99 (2005).
    [CrossRef]

2005 (7)

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, "Detection of mid-IR radiation by sum frequency generation for free space optical communication," Opt. Lasers Eng. 43, 537-544 (2005).
[CrossRef]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, and M. M. Fejer, "Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30, 1725-1727 (2005).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, "A photonic quantum information interface," Nature 437, 116-120 (2005).
[CrossRef] [PubMed]

D. T. Pegg and J. Jeffers, "Quantum nature of laser light," J. Mod. Opt. 52, 1835-1856 (2005).
[CrossRef]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, "Generation of hyperentangled photon pairs," Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, "Quantum secure direct communication with high-dimension quantum superdense coding," Phys. Rev. A 71, 044305 (2005).
[CrossRef]

D. A. Farías and J. N. Eckstein, "Dynamic electrooptic frequency shifter for pulsed light signals," IEEE J. Quantum Electron. 41, 94-99 (2005).
[CrossRef]

2004 (3)

2003 (1)

G. Giorgi, P. Mataloni, and F. De Martini, "Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits," Phys. Rev. Lett. 90, 027902 (2003).
[CrossRef] [PubMed]

2002 (3)

K. Inoue, E. Waks, and Y. Yamamoto, "Differential phase shift quantum key distribution," Phys. Rev. Lett. 89, 037902 (2002).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

D. Stucki, N. G. O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41.1-41.8 (2002).
[CrossRef]

2001 (1)

R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, "Broad-band fluorescence upconversion for femtosecond spectroscopy," Appl. Phys. Lett. 79, 566-568 (2001).
[CrossRef]

2000 (1)

R. J. Hughes, G. L. Morgan, and C. G. Peterson, "Quantum key distribution over a 48-km optical fiber network," J. Mod. Opt. 47, 533-547 (2000).
[CrossRef]

1995 (2)

1992 (1)

J. Huang and P. Kumar, "Observation of quantum frequency conversion," Phys. Rev. Lett. 68, 2153-2156 (1992).
[CrossRef] [PubMed]

1978 (1)

1976 (1)

1972 (1)

1968 (3)

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

J. E. Midwinter, "Image conversion from 1.6 μm to the visible in lithium niobate," Appl. Phys. Lett. 12, 68-70 (1968).
[CrossRef]

J. Warner, "Spatial resolution measurements in up-conversion from 10.6 μm to the visible," Appl. Phys. Lett. 13, 360-362 (1968).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Abbas, M. M.

Aellen, T.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, "Detection of mid-IR radiation by sum frequency generation for free space optical communication," Opt. Lasers Eng. 43, 537-544 (2005).
[CrossRef]

Albota, M. A.

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, "A photonic quantum information interface," Nature 437, 116-120 (2005).
[CrossRef] [PubMed]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, "A photonic quantum information interface," Nature 437, 116-120 (2005).
[CrossRef] [PubMed]

Barreiro, J. T.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, "Generation of hyperentangled photon pairs," Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Beck, M.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, "Detection of mid-IR radiation by sum frequency generation for free space optical communication," Opt. Lasers Eng. 43, 537-544 (2005).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Bosenberg, W. R.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Bright, F. V.

Byer, R. L.

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).

De Martini, F.

G. Giorgi, P. Mataloni, and F. De Martini, "Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits," Phys. Rev. Lett. 90, 027902 (2003).
[CrossRef] [PubMed]

Deng, F. G.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, "Quantum secure direct communication with high-dimension quantum superdense coding," Phys. Rev. A 71, 044305 (2005).
[CrossRef]

Diamanti, E.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Eckardt, R. C.

Eckstein, J. N.

D. A. Farías and J. N. Eckstein, "Dynamic electrooptic frequency shifter for pulsed light signals," IEEE J. Quantum Electron. 41, 94-99 (2005).
[CrossRef]

Epps, H. W.

Ernsting, N. P.

R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, "Broad-band fluorescence upconversion for femtosecond spectroscopy," Appl. Phys. Lett. 79, 566-568 (2001).
[CrossRef]

Faist, J.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, "Detection of mid-IR radiation by sum frequency generation for free space optical communication," Opt. Lasers Eng. 43, 537-544 (2005).
[CrossRef]

Farías, D. A.

D. A. Farías and J. N. Eckstein, "Dynamic electrooptic frequency shifter for pulsed light signals," IEEE J. Quantum Electron. 41, 94-99 (2005).
[CrossRef]

Fejer, M. M.

Giorgi, G.

G. Giorgi, P. Mataloni, and F. De Martini, "Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits," Phys. Rev. Lett. 90, 027902 (2003).
[CrossRef] [PubMed]

Gisin, N.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, "Detection of mid-IR radiation by sum frequency generation for free space optical communication," Opt. Lasers Eng. 43, 537-544 (2005).
[CrossRef]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, "A photonic quantum information interface," Nature 437, 116-120 (2005).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Guinnard, N. G. O.

D. Stucki, N. G. O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41.1-41.8 (2002).
[CrossRef]

Gurski, T. R.

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, "A photonic quantum information interface," Nature 437, 116-120 (2005).
[CrossRef] [PubMed]

Huang, J.

J. Huang and P. Kumar, "Observation of quantum frequency conversion," Phys. Rev. Lett. 68, 2153-2156 (1992).
[CrossRef] [PubMed]

Hughes, R. J.

R. J. Hughes, G. L. Morgan, and C. G. Peterson, "Quantum key distribution over a 48-km optical fiber network," J. Mod. Opt. 47, 533-547 (2000).
[CrossRef]

Hulme, K. F.

Inoue, K.

K. Inoue, E. Waks, and Y. Yamamoto, "Differential phase shift quantum key distribution," Phys. Rev. Lett. 89, 037902 (2002).
[CrossRef] [PubMed]

Jeffers, J.

D. T. Pegg and J. Jeffers, "Quantum nature of laser light," J. Mod. Opt. 52, 1835-1856 (2005).
[CrossRef]

Karstad, K.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, "Detection of mid-IR radiation by sum frequency generation for free space optical communication," Opt. Lasers Eng. 43, 537-544 (2005).
[CrossRef]

Kharlanov, V.

R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, "Broad-band fluorescence upconversion for femtosecond spectroscopy," Appl. Phys. Lett. 79, 566-568 (2001).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Kostiuk, T.

Kovalenko, S. A.

R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, "Broad-band fluorescence upconversion for femtosecond spectroscopy," Appl. Phys. Lett. 79, 566-568 (2001).
[CrossRef]

Kumar, P.

J. Huang and P. Kumar, "Observation of quantum frequency conversion," Phys. Rev. Lett. 68, 2153-2156 (1992).
[CrossRef] [PubMed]

Kurz, J. R.

Kwiat, P. G.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, "Generation of hyperentangled photon pairs," Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

A. P. VanDevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 51, 1433-1445 (2004).
[CrossRef]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, "Generation of hyperentangled photon pairs," Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Langrock, C.

Li, Y. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, "Quantum secure direct communication with high-dimension quantum superdense coding," Phys. Rev. A 71, 044305 (2005).
[CrossRef]

Liu, X. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, "Quantum secure direct communication with high-dimension quantum superdense coding," Phys. Rev. A 71, 044305 (2005).
[CrossRef]

Long, G. L.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, "Quantum secure direct communication with high-dimension quantum superdense coding," Phys. Rev. A 71, 044305 (2005).
[CrossRef]

Maran, S. P.

Mataloni, P.

G. Giorgi, P. Mataloni, and F. De Martini, "Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits," Phys. Rev. Lett. 90, 027902 (2003).
[CrossRef] [PubMed]

Midwinter, J. E.

J. E. Midwinter, "Image conversion from 1.6 μm to the visible in lithium niobate," Appl. Phys. Lett. 12, 68-70 (1968).
[CrossRef]

Morgan, G. L.

R. J. Hughes, G. L. Morgan, and C. G. Peterson, "Quantum key distribution over a 48-km optical fiber network," J. Mod. Opt. 47, 533-547 (2000).
[CrossRef]

Myers, L. E.

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).

Ogilvie, K. W.

Pegg, D. T.

D. T. Pegg and J. Jeffers, "Quantum nature of laser light," J. Mod. Opt. 52, 1835-1856 (2005).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, "Generation of hyperentangled photon pairs," Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Peterson, C. G.

R. J. Hughes, G. L. Morgan, and C. G. Peterson, "Quantum key distribution over a 48-km optical fiber network," J. Mod. Opt. 47, 533-547 (2000).
[CrossRef]

Pierce, J. W.

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

D. Stucki, N. G. O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41.1-41.8 (2002).
[CrossRef]

Roussev, R. V.

Schanz, R.

R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, "Broad-band fluorescence upconversion for femtosecond spectroscopy," Appl. Phys. Lett. 79, 566-568 (2001).
[CrossRef]

Stefanov, A.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, "Detection of mid-IR radiation by sum frequency generation for free space optical communication," Opt. Lasers Eng. 43, 537-544 (2005).
[CrossRef]

Stucki, D.

D. Stucki, N. G. O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41.1-41.8 (2002).
[CrossRef]

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, "A photonic quantum information interface," Nature 437, 116-120 (2005).
[CrossRef] [PubMed]

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, "A photonic quantum information interface," Nature 437, 116-120 (2005).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

VanDevender, A. P.

A. P. VanDevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 51, 1433-1445 (2004).
[CrossRef]

Waks, E.

K. Inoue, E. Waks, and Y. Yamamoto, "Differential phase shift quantum key distribution," Phys. Rev. Lett. 89, 037902 (2002).
[CrossRef] [PubMed]

Wang, C.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, "Quantum secure direct communication with high-dimension quantum superdense coding," Phys. Rev. A 71, 044305 (2005).
[CrossRef]

Warner, J.

K. F. Hulme and J. Warner, "Theory of thermal imaging using infrared to visible image up-conversion," Appl. Opt. 11, 2956-2964 (1972).
[CrossRef] [PubMed]

J. Warner, "Spatial resolution measurements in up-conversion from 10.6 μm to the visible," Appl. Phys. Lett. 13, 360-362 (1968).
[CrossRef]

Wegmuller, M.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, "Detection of mid-IR radiation by sum frequency generation for free space optical communication," Opt. Lasers Eng. 43, 537-544 (2005).
[CrossRef]

Wong, F. N. C.

Yamamoto, Y.

Zbinden, H.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, "A photonic quantum information interface," Nature 437, 116-120 (2005).
[CrossRef] [PubMed]

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, "Detection of mid-IR radiation by sum frequency generation for free space optical communication," Opt. Lasers Eng. 43, 537-544 (2005).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

D. Stucki, N. G. O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41.1-41.8 (2002).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

R. Schanz, S. A. Kovalenko, V. Kharlanov, and N. P. Ernsting, "Broad-band fluorescence upconversion for femtosecond spectroscopy," Appl. Phys. Lett. 79, 566-568 (2001).
[CrossRef]

J. Warner, "Spatial resolution measurements in up-conversion from 10.6 μm to the visible," Appl. Phys. Lett. 13, 360-362 (1968).
[CrossRef]

J. E. Midwinter, "Image conversion from 1.6 μm to the visible in lithium niobate," Appl. Phys. Lett. 12, 68-70 (1968).
[CrossRef]

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (1)

D. A. Farías and J. N. Eckstein, "Dynamic electrooptic frequency shifter for pulsed light signals," IEEE J. Quantum Electron. 41, 94-99 (2005).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

J. Mod. Opt. (3)

A. P. VanDevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 51, 1433-1445 (2004).
[CrossRef]

D. T. Pegg and J. Jeffers, "Quantum nature of laser light," J. Mod. Opt. 52, 1835-1856 (2005).
[CrossRef]

R. J. Hughes, G. L. Morgan, and C. G. Peterson, "Quantum key distribution over a 48-km optical fiber network," J. Mod. Opt. 47, 533-547 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, "A photonic quantum information interface," Nature 437, 116-120 (2005).
[CrossRef] [PubMed]

New J. Phys. (1)

D. Stucki, N. G. O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41.1-41.8 (2002).
[CrossRef]

Opt. Lasers Eng. (1)

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, "Detection of mid-IR radiation by sum frequency generation for free space optical communication," Opt. Lasers Eng. 43, 537-544 (2005).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Phys. Rev. A (1)

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, "Quantum secure direct communication with high-dimension quantum superdense coding," Phys. Rev. A 71, 044305 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, "Generation of hyperentangled photon pairs," Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

J. Huang and P. Kumar, "Observation of quantum frequency conversion," Phys. Rev. Lett. 68, 2153-2156 (1992).
[CrossRef] [PubMed]

K. Inoue, E. Waks, and Y. Yamamoto, "Differential phase shift quantum key distribution," Phys. Rev. Lett. 89, 037902 (2002).
[CrossRef] [PubMed]

G. Giorgi, P. Mataloni, and F. De Martini, "Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits," Phys. Rev. Lett. 90, 027902 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Other (3)

See MagiQ Technologies at http://www.magiqtech.com/.

See id Quantique at http://www.idquantique.com/.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

High-efficiency upconversion experiment. A weak 1550 nm pulse is combined on a dichroic beam splitter (DBS) with a bright 1064 nm escort pulse and focused onto a nonlinear crystal (PPLN). The 631 nm upconverted pulse is then filtered through dispersion prisms and an interference filter and finally detected by a silicon avalanche photodiode (APD). HWP, half-wave plate.

Fig. 2
Fig. 2

Rabi oscillation-like nature of upconversion [Eq. (1)] is demonstrated by measuring the rate of upconverted photons for increasing escort pulse intensities. The imperfect visibility is well modeled (solid curve) by the precise pulse shapes. Visibility is limited mostly by the extent to which the 1544 nm pulse is temporally and spatially smaller than the escort pulse. The prediction was scaled in the pulse-energy direction owing to inability to measure the absolute peak escort intensity to better than a factor of 2; however, predicted and measured pulse energies agree to that level.

Fig. 3
Fig. 3

(a) Preparation of 1550 - nm pulse along with a bright 1064 nm escort pulse in a two-time-bin superposition state using an unbalanced Mach–Zehnder interferometer. The photon is upconverted and then passed through another interferometer with a phase shifter in one arm. Interference fringes are observed in the resulting middle time bin. (b) An equivalent, but more robust, implementation using an unbalanced Michelson interferometer. After the two-time-bin state is prepared and upconverted, it is reflected back through the interferometer and picked off using a dichroic beam splitter, where it is detected by an APD. Two dispersive glass plates are tipped near Brewster’s angle to produce a low-loss and zero walk-off phase shift between the long–short and short–long processes.

Fig. 4
Fig. 4

(a) Detected photons versus time for two settings of the phase glass, corresponding to constructive and destructive interference. The long–long and short–short processes are unaffected by the position of the phase glass, while the central time bin, arising from the interfering short–long and long–short processes, varies greatly. (b) Number of photons detected in the central time bin as the phase glass plates are tilted. The visibility fringe is 95% and demonstrates the coherence of the upconversion process.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P o ( z ) = sin 2 ( ω i ω o d Q 2 E e 2 n i n o c 2 z ) ,

Metrics