Abstract

We solve the Jaynes–Cummings Hamiltonian with time-dependent coupling parameters under the dipole and rotating-wave approximations for a three-dimensional photonic crystal (PC) single-mode cavity with a sufficiently high-quality Q factor. We then exploit the results to show how to create a maximally entangled state of two atoms and how to implement several quantum logic gates: a dual-rail Hadamard gate, a dual-rail NOT gate, and a SWAP gate. The atoms in all of these operations are syncronized, which is not the case in previous studies of PCs [J. Mod. Opt. 48, 1495 (2001) ; Eur. Phys. J. D 10, 285 (2000) ; Eur. Phys. J. D 18, 247 (2002) ]. Our method has the potential for extension to N-atom entanglement, universal quantum logic operations, and the implementation of other useful, cavity QED-based quantum information processing tasks.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription