Abstract

The linear optics approach to quantum computing has several potential advantages, but the logic operations are probabilistic. We review the use of the quantum Zeno effect to suppress the intrinsic failure events in these kinds of devices, which would produce deterministic logic operations without the need for ancilla photons or high-efficiency detectors. The potential advantages of implementing Zeno gates using microcavities and electromagnetically induced transparency are discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
    [CrossRef] [PubMed]
  2. For a review article, see P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing," ArXiv.org e-Print archive, quant-ph/0512071, 9 December, 2005, http://arxiv.org/abs/quant-ph/0512071.
  3. T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of nondeterministic quantum logic operations using linear optical elements," Phys. Rev. Lett. 88, 257902 (2002).
    [CrossRef] [PubMed]
  4. T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, "Experimental controlled-NOT logic gate for single photons in the coincidence basis," Phys. Rev. A 68, 032316 (2003).
    [CrossRef]
  5. J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, "Demonstration of an all-optical quantum controlled-NOT gate," Nature 426, 264-267 (2003).
    [CrossRef] [PubMed]
  6. S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, "Realization of a photonic CNOT gate sufficient for quantum computation," Phys. Rev. Lett. 93, 020504 (2004).
    [CrossRef] [PubMed]
  7. T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Experimental demonstration of a quantum circuit using linear optics gates," Phys. Rev. A 71, 032307 (2005).
    [CrossRef]
  8. T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of quantum error correction using linear optics," Phys. Rev. A 71, 052332 (2005).
    [CrossRef]
  9. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, "Experimental one-way quantum computing," Nature 434, 169-176 (2005).
    [CrossRef] [PubMed]
  10. J. D. Franson, B. C. Jacobs, and T. B. Pittman, "Quantum computing using single photons and the Zeno effect," Phys. Rev. A 70, 062302 (2004).
    [CrossRef]
  11. B. Misra and E. C. G. Sudarshan, "The Zeno's paradox in quantum theory," J. Math. Phys. 18, 756-763 (1977).
    [CrossRef]
  12. J. D. Franson and S. M. Hendrickson, "Optical transparency using interference between two modes of a cavity," ArXiv.org e-print, quant-ph/0603044, 6 March 2006, http://arxiv.org/abs/quant-ph/0603044.
  13. L.-M. Duan, A. Kuzmich, and H. J. Kimble, "Cavity QED and quantum-information processing with hot trapped atoms," Phys. Rev. A 67, 032305 (2003).
    [CrossRef]
  14. M. Koashi, T. Yamamoto, and N. Imoto, "Probabilistic manipulation of entangled photons," Phys. Rev. A 63, 030301 (2001).
    [CrossRef]
  15. T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Probabilistic quantum logic operations using polarizing beam splitters," Phys. Rev. A 64, 062311 (2001).
    [CrossRef]
  16. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1977).
    [CrossRef]
  17. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
    [CrossRef]

2005 (3)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Experimental demonstration of a quantum circuit using linear optics gates," Phys. Rev. A 71, 032307 (2005).
[CrossRef]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of quantum error correction using linear optics," Phys. Rev. A 71, 052332 (2005).
[CrossRef]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, "Experimental one-way quantum computing," Nature 434, 169-176 (2005).
[CrossRef] [PubMed]

2004 (2)

J. D. Franson, B. C. Jacobs, and T. B. Pittman, "Quantum computing using single photons and the Zeno effect," Phys. Rev. A 70, 062302 (2004).
[CrossRef]

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, "Realization of a photonic CNOT gate sufficient for quantum computation," Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef] [PubMed]

2003 (3)

L.-M. Duan, A. Kuzmich, and H. J. Kimble, "Cavity QED and quantum-information processing with hot trapped atoms," Phys. Rev. A 67, 032305 (2003).
[CrossRef]

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, "Experimental controlled-NOT logic gate for single photons in the coincidence basis," Phys. Rev. A 68, 032316 (2003).
[CrossRef]

J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, "Demonstration of an all-optical quantum controlled-NOT gate," Nature 426, 264-267 (2003).
[CrossRef] [PubMed]

2002 (1)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of nondeterministic quantum logic operations using linear optical elements," Phys. Rev. Lett. 88, 257902 (2002).
[CrossRef] [PubMed]

2001 (3)

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

M. Koashi, T. Yamamoto, and N. Imoto, "Probabilistic manipulation of entangled photons," Phys. Rev. A 63, 030301 (2001).
[CrossRef]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Probabilistic quantum logic operations using polarizing beam splitters," Phys. Rev. A 64, 062311 (2001).
[CrossRef]

1999 (1)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

1977 (2)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1977).
[CrossRef]

B. Misra and E. C. G. Sudarshan, "The Zeno's paradox in quantum theory," J. Math. Phys. 18, 756-763 (1977).
[CrossRef]

Aspelmeyer, M.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, "Experimental one-way quantum computing," Nature 434, 169-176 (2005).
[CrossRef] [PubMed]

Branning, D.

J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, "Demonstration of an all-optical quantum controlled-NOT gate," Nature 426, 264-267 (2003).
[CrossRef] [PubMed]

Dowling, J. P.

For a review article, see P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing," ArXiv.org e-Print archive, quant-ph/0512071, 9 December, 2005, http://arxiv.org/abs/quant-ph/0512071.

Duan, L.-M.

L.-M. Duan, A. Kuzmich, and H. J. Kimble, "Cavity QED and quantum-information processing with hot trapped atoms," Phys. Rev. A 67, 032305 (2003).
[CrossRef]

Fitch, M. J.

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, "Experimental controlled-NOT logic gate for single photons in the coincidence basis," Phys. Rev. A 68, 032316 (2003).
[CrossRef]

Franson, J. D.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Experimental demonstration of a quantum circuit using linear optics gates," Phys. Rev. A 71, 032307 (2005).
[CrossRef]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of quantum error correction using linear optics," Phys. Rev. A 71, 052332 (2005).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, "Quantum computing using single photons and the Zeno effect," Phys. Rev. A 70, 062302 (2004).
[CrossRef]

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, "Experimental controlled-NOT logic gate for single photons in the coincidence basis," Phys. Rev. A 68, 032316 (2003).
[CrossRef]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of nondeterministic quantum logic operations using linear optical elements," Phys. Rev. Lett. 88, 257902 (2002).
[CrossRef] [PubMed]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Probabilistic quantum logic operations using polarizing beam splitters," Phys. Rev. A 64, 062311 (2001).
[CrossRef]

J. D. Franson and S. M. Hendrickson, "Optical transparency using interference between two modes of a cavity," ArXiv.org e-print, quant-ph/0603044, 6 March 2006, http://arxiv.org/abs/quant-ph/0603044.

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Gasparoni, S.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, "Realization of a photonic CNOT gate sufficient for quantum computation," Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef] [PubMed]

Harris, S. E.

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1977).
[CrossRef]

Hendrickson, S. M.

J. D. Franson and S. M. Hendrickson, "Optical transparency using interference between two modes of a cavity," ArXiv.org e-print, quant-ph/0603044, 6 March 2006, http://arxiv.org/abs/quant-ph/0603044.

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Imoto, N.

M. Koashi, T. Yamamoto, and N. Imoto, "Probabilistic manipulation of entangled photons," Phys. Rev. A 63, 030301 (2001).
[CrossRef]

Jacobs, B. C.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of quantum error correction using linear optics," Phys. Rev. A 71, 052332 (2005).
[CrossRef]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Experimental demonstration of a quantum circuit using linear optics gates," Phys. Rev. A 71, 032307 (2005).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, "Quantum computing using single photons and the Zeno effect," Phys. Rev. A 70, 062302 (2004).
[CrossRef]

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, "Experimental controlled-NOT logic gate for single photons in the coincidence basis," Phys. Rev. A 68, 032316 (2003).
[CrossRef]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of nondeterministic quantum logic operations using linear optical elements," Phys. Rev. Lett. 88, 257902 (2002).
[CrossRef] [PubMed]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Probabilistic quantum logic operations using polarizing beam splitters," Phys. Rev. A 64, 062311 (2001).
[CrossRef]

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Kimble, H. J.

L.-M. Duan, A. Kuzmich, and H. J. Kimble, "Cavity QED and quantum-information processing with hot trapped atoms," Phys. Rev. A 67, 032305 (2003).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Koashi, M.

M. Koashi, T. Yamamoto, and N. Imoto, "Probabilistic manipulation of entangled photons," Phys. Rev. A 63, 030301 (2001).
[CrossRef]

Kok, P.

For a review article, see P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing," ArXiv.org e-Print archive, quant-ph/0512071, 9 December, 2005, http://arxiv.org/abs/quant-ph/0512071.

Kuzmich, A.

L.-M. Duan, A. Kuzmich, and H. J. Kimble, "Cavity QED and quantum-information processing with hot trapped atoms," Phys. Rev. A 67, 032305 (2003).
[CrossRef]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Lukin, M. D.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

For a review article, see P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing," ArXiv.org e-Print archive, quant-ph/0512071, 9 December, 2005, http://arxiv.org/abs/quant-ph/0512071.

Misra, B.

B. Misra and E. C. G. Sudarshan, "The Zeno's paradox in quantum theory," J. Math. Phys. 18, 756-763 (1977).
[CrossRef]

Munro, W. J.

For a review article, see P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing," ArXiv.org e-Print archive, quant-ph/0512071, 9 December, 2005, http://arxiv.org/abs/quant-ph/0512071.

Nemoto, K.

For a review article, see P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing," ArXiv.org e-Print archive, quant-ph/0512071, 9 December, 2005, http://arxiv.org/abs/quant-ph/0512071.

O'Brien, J. L.

J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, "Demonstration of an all-optical quantum controlled-NOT gate," Nature 426, 264-267 (2003).
[CrossRef] [PubMed]

Pan, J. W.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, "Realization of a photonic CNOT gate sufficient for quantum computation," Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef] [PubMed]

Pittman, T. B.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Experimental demonstration of a quantum circuit using linear optics gates," Phys. Rev. A 71, 032307 (2005).
[CrossRef]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of quantum error correction using linear optics," Phys. Rev. A 71, 052332 (2005).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, "Quantum computing using single photons and the Zeno effect," Phys. Rev. A 70, 062302 (2004).
[CrossRef]

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, "Experimental controlled-NOT logic gate for single photons in the coincidence basis," Phys. Rev. A 68, 032316 (2003).
[CrossRef]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of nondeterministic quantum logic operations using linear optical elements," Phys. Rev. Lett. 88, 257902 (2002).
[CrossRef] [PubMed]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Probabilistic quantum logic operations using polarizing beam splitters," Phys. Rev. A 64, 062311 (2001).
[CrossRef]

Pryde, G. J.

J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, "Demonstration of an all-optical quantum controlled-NOT gate," Nature 426, 264-267 (2003).
[CrossRef] [PubMed]

Ralph, T. C.

J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, "Demonstration of an all-optical quantum controlled-NOT gate," Nature 426, 264-267 (2003).
[CrossRef] [PubMed]

For a review article, see P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing," ArXiv.org e-Print archive, quant-ph/0512071, 9 December, 2005, http://arxiv.org/abs/quant-ph/0512071.

Resch, K. J.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, "Experimental one-way quantum computing," Nature 434, 169-176 (2005).
[CrossRef] [PubMed]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Rudolph, T.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, "Experimental one-way quantum computing," Nature 434, 169-176 (2005).
[CrossRef] [PubMed]

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, "Realization of a photonic CNOT gate sufficient for quantum computation," Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef] [PubMed]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Schenck, E.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, "Experimental one-way quantum computing," Nature 434, 169-176 (2005).
[CrossRef] [PubMed]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Sudarshan, E. C. G.

B. Misra and E. C. G. Sudarshan, "The Zeno's paradox in quantum theory," J. Math. Phys. 18, 756-763 (1977).
[CrossRef]

Vedral, V.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, "Experimental one-way quantum computing," Nature 434, 169-176 (2005).
[CrossRef] [PubMed]

Walther, P.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, "Experimental one-way quantum computing," Nature 434, 169-176 (2005).
[CrossRef] [PubMed]

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, "Realization of a photonic CNOT gate sufficient for quantum computation," Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef] [PubMed]

Weinfurter, H.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, "Experimental one-way quantum computing," Nature 434, 169-176 (2005).
[CrossRef] [PubMed]

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

White, A. G.

J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, "Demonstration of an all-optical quantum controlled-NOT gate," Nature 426, 264-267 (2003).
[CrossRef] [PubMed]

Yamamoto, T.

M. Koashi, T. Yamamoto, and N. Imoto, "Probabilistic manipulation of entangled photons," Phys. Rev. A 63, 030301 (2001).
[CrossRef]

Zeilinger, A.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, "Experimental one-way quantum computing," Nature 434, 169-176 (2005).
[CrossRef] [PubMed]

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, "Realization of a photonic CNOT gate sufficient for quantum computation," Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef] [PubMed]

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

J. Math. Phys. (1)

B. Misra and E. C. G. Sudarshan, "The Zeno's paradox in quantum theory," J. Math. Phys. 18, 756-763 (1977).
[CrossRef]

Nature (3)

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, "Experimental one-way quantum computing," Nature 434, 169-176 (2005).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, "Demonstration of an all-optical quantum controlled-NOT gate," Nature 426, 264-267 (2003).
[CrossRef] [PubMed]

Phys. Rev. A (7)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Experimental demonstration of a quantum circuit using linear optics gates," Phys. Rev. A 71, 032307 (2005).
[CrossRef]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of quantum error correction using linear optics," Phys. Rev. A 71, 052332 (2005).
[CrossRef]

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, "Experimental controlled-NOT logic gate for single photons in the coincidence basis," Phys. Rev. A 68, 032316 (2003).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, "Quantum computing using single photons and the Zeno effect," Phys. Rev. A 70, 062302 (2004).
[CrossRef]

L.-M. Duan, A. Kuzmich, and H. J. Kimble, "Cavity QED and quantum-information processing with hot trapped atoms," Phys. Rev. A 67, 032305 (2003).
[CrossRef]

M. Koashi, T. Yamamoto, and N. Imoto, "Probabilistic manipulation of entangled photons," Phys. Rev. A 63, 030301 (2001).
[CrossRef]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Probabilistic quantum logic operations using polarizing beam splitters," Phys. Rev. A 64, 062311 (2001).
[CrossRef]

Phys. Rev. Lett. (3)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, "Demonstration of nondeterministic quantum logic operations using linear optical elements," Phys. Rev. Lett. 88, 257902 (2002).
[CrossRef] [PubMed]

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, "Realization of a photonic CNOT gate sufficient for quantum computation," Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Phys. Today (1)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1977).
[CrossRef]

Other (2)

J. D. Franson and S. M. Hendrickson, "Optical transparency using interference between two modes of a cavity," ArXiv.org e-print, quant-ph/0603044, 6 March 2006, http://arxiv.org/abs/quant-ph/0603044.

For a review article, see P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing," ArXiv.org e-Print archive, quant-ph/0512071, 9 December, 2005, http://arxiv.org/abs/quant-ph/0512071.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Generic logic gate using linear optical elements. The two input qubits are mixed with a number of ancilla photons by using linear optical elements. Corrections to the output may be applied based on measurements made on the ancilla.

Fig. 2
Fig. 2

Controlled-NOT logic gate implemented using two polarizing beam splitters, an entangled pair of ancilla, and two detectors. This gate will produce the correct logical output whenever a single photon is found in both detectors, which occurs with a probability of 1 4 .

Fig. 3
Fig. 3

Basic origin of the quantum Zeno effect in which frequent measurements to determine whether an error has occurred will continuously collapse the state vector of the system back into the initial state corresponding to no errors.

Fig. 4
Fig. 4

Zeno logic gate implemented using two coupled optical fibers and strong two-photon absorption due to atoms in the fiber cores or their evanescent fields. The length of the coupled fibers is chosen in such a way that a single photon in either input port will be completely coupled into the other fiber (a SWAP operation). When two photons are input at the same time, the Zeno effect will prevent two photons from being in the same fiber core, which results in a controlled phase gate in addition to the SWAP.

Fig. 5
Fig. 5

Reduction in the intrinsic error (failure) rate of a linear optics logic gate due to the quantum Zeno effect. The dots correspond to the error probability in the device of Fig. 4 as a function of the number of measurements performed. The solid curve shows the equivalent error probability as a function of the rate of two-photon absorption (arbitrary units) (from Ref. [10]).

Fig. 6
Fig. 6

Implementation of a Zeno logic gate ( SWAP ) using two wave guides coupled to two ring resonators, R 1 and R 2 , with two-photon absorbing atoms in the evanescent fields of the resonators. This device is equivalent to the coupled optical fibers of Fig. 4, except that the rate of two-photon absorption is enhanced by the small mode volume of the resonators.

Fig. 7
Fig. 7

Zeno logic gate implemented as in Fig. 6 but with variable couplings included between the wave guides and the resonators to improve the performance.

Fig. 8
Fig. 8

Optical transparency using the interference between two modes of a resonant cavity. One or more photons in a waveguide are strongly coupled into a ring resonator, which in turn is coupled into a large number of two-photon absorbing atoms. Quantum interference eliminates single-photon scattering when the incident photons are tuned between two resonator levels, although strong two-photon absorption can still occur.

Fig. 9
Fig. 9

Numerical results (solid curve) showing a reduction in the single-photon scattering rate due to quantum interference in the device of Fig. 8. The dotted curve shows the two-photon absorption rate (both in arbitrary units) (from Ref. [12]).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P F = 1 cos 2 N ( π 2 N ) .
SWAP [ 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 ] .
R 1 = 2 N A ( γ 1 Δ 1 2 + ( γ 1 ) 2 ) ( M 1 M W δ ω 0 2 + M 1 M W δ + ω 0 2 ) 2 .

Metrics