Abstract

We investigate the prediction of the infrared laser emission in the Yb3+-doped cubic KY3F10 crystal that can be pumped by a laser diode. Bulky single crystals have been grown by the Czochralski technique at Tohoku University, and crystalline fibers have been grown by the laser heated pedestal growth technique at Claude Bernard/Lyon 1 University. Absorption and emission spectra were recorded to contribute to the determination of electronic and vibronic energy levels by using in addition the Raman spectrum and the barycenter law. Yb3+ concentration dependence of the F522 experimental decay time was analyzed using concentration gradient fibers in order to attempt to understand involved concentration quenching mechanisms. Under Yb3+ ion infrared pumping, self-trapping has been observed at low concentration, whereas upconversion nonradiative energy transfer to unexpected rare-earth impurities (Er3+,Tm3+) has been observed in the visible region and interpreted with a limited diffusion process within the Yb3+ doping ion subsystem toward impurities. Main parameters useful for a theoretical approach of laser potentiality have been given and compared with other fluoride crystals.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993).
    [CrossRef]
  2. A. Brenier and G. Boulon, "New criteria to choose the best Yb3+-doped laser crystals," Europhys. Lett. 55, 647-651 (2001).
    [CrossRef]
  3. A. Brenier and G. Boulon, "Overview of the best Yb3+-doped laser crystals," J. Alloys Compd. 323-324, 210-213 (2002).
  4. G. L. Bourdet, "New evaluation of ytterbium-doped materials for CW laser applications," Opt. Commun. 198, 411-415 (2001).
    [CrossRef]
  5. L. Laversenne, S. Kairouani, Y. Guyot, C. Goutaudier, G. Boulon, and M. Th. Cohen-Adad, "Correlation between dopant content and excited-state dynamics properties inEr3+-Yb3+-codoped Y2O3 by using a new combinatorial method," Opt. Mater. 19, 59-66 (2002).
    [CrossRef]
  6. L. Laversenne, C. Goutaudier, Y. Guyot, M. Th. Cohen-Adad, and G. Boulon, "Search of optimized trivalent ytterbium doped-inorganic crystals for laser applications," J. Alloys Compd. 341, 214-219 (2002).
    [CrossRef]
  7. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3," Opt. Mater. 24, 103-109 (2003).
    [CrossRef]
  8. A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
    [CrossRef]
  9. Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: spectroscopic properties and assignment of energy levels," Opt. Mater. 27, 1658-1663 (2005).
    [CrossRef]
  10. Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: concentration quenching analysis and laser optimization," Opt. Mater. 28, 1-8 (2006).
    [CrossRef]
  11. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, "Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal," J. Opt. Soc. Am. B 23, 676-683 (2006).
    [CrossRef]
  12. M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, "Crystal growth, Yb3+ spectroscopy, concentration quenching analysis, and potentiality of laser emission in Ca1−XYbXF2+X," J. Phys. Condens. Matter 16, 1501-1521 (2004).
    [CrossRef]
  13. G. Boulon, M. Ito, C. Goutaudier, and Y. Guyot, "Advances in growth of fiber crystal by the LHPG technique. Application to the optimization of Yb[3+]-doped CaF CaF[2] laser crystals," J. Cryst. Growth 292, 230-235 (2006).
    [CrossRef]
  14. S. M. Kaczmarek, A. Bensalah, and G. Boulon, "γ-ray induced color centers in pure and Yb doped LiYF4 and LiLuF4 single crystals," Opt. Mater. 28, 123-128 (2006).
    [CrossRef]
  15. A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, "Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications," J. Lumin. 122-123, 444-446 (2007).
    [CrossRef]
  16. A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, "Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality," Opt. Mater. 26, 375-383 (2004).
    [CrossRef]
  17. G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon, "From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals," Mol. Phys. 102, 1119-1132 (2004).
    [CrossRef]
  18. A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, "Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4," J. Alloys Compd. 380, 15-26 (2004).
    [CrossRef]
  19. J.-P. R.. Wells, A. Sugiyama, T. P. J. Han, and H. G. Gallagher, "Laser site selective excitation of KY3F10-doped with samarium," J. Lumin. 85, 91-102 (1999).
    [CrossRef]
  20. A. P. Ayala, M. A. S. Oliveira, J.-Y. Gesland, and R. L. Moreira, "Electrical and dielectric investigations of the conduction processes in KY3F10 crystals," J. Phys. Condens. Matter 10, 5161-5164 (1998).
    [CrossRef]
  21. M. F. Joubert, G. Boulon, and F. Gaume, "Energy transfer between the Eu2+ sites in KY3F10 single crystals," Chem. Phys. Lett. 80, 367-370 (1981).
    [CrossRef]
  22. P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, "Diode-pumped Pr3+KY3F10 red laser," Opt. Lett. 32, 1462-1464 (2007).
    [CrossRef] [PubMed]
  23. A. Braud, P. Y. Tigréat, J. L. Doualan, and R. Moncorgé, "Spectroscopy and cw operation of a 1.85 μmTm:KY3F10 laser," Appl. Phys. B 72, 909-911 (2001).
    [CrossRef]
  24. K. J. Kim, A. Jouini, A. Yoshikawa, R. Simura, G. Boulon, and T. Fukuda, "Growth and optical properties of Pr,Yb-codoped KY3F10 fluoride single crystals for up-conversion visible luminescence," J. Cryst. Growth 299, 171-177 (2007).
    [CrossRef]
  25. M. Ito, C. Goutaudier, K. Lebbou, S. Hraiech, and G. Boulon, "Growth of Yb3+:KY3F10 single crystals by laser heated pedestal growth (LHPG) technique," J. Cryst. Growth (to be published).
  26. R. Yu. Abdulsabirov, A. V. Vinokurov, V. A. Ivanshin, I. N. Kurkin, and E. A. Pudovik, "Optical spectra and spin lattice relaxation of rare earth ions in KY3F10 crystals," Opt. Spectrosc. 63, 55-59 (1987).
  27. A. Lupei, V. Lupei, C. Presura, V. N. Enaki, and A. Petraru, "Electron-phonon coupling effects on Yb3+ spectra in several laser crystals," J. Phys. Condens. Matter 11, 3769-3778 (1999).
    [CrossRef]
  28. R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, "Energy levels of Yb3+ in gallium and aluminum garnets. I. Spectra," Phys. Rev. 159, 245-251 (1967).
    [CrossRef]
  29. F. Auzel, "On the maximum splitting of the (F7/22) ground state in Yb3+-doped solid state laser materials," J. Lumin. 93, 129-135 (2001).
    [CrossRef]
  30. P.-H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, "Spectroscopic and crystal-field analysis of new Yb-doped laser materials," J. Phys. Condens. Matter 13, 5427-5447 (2001).
    [CrossRef]
  31. P. Porcher and P. Caro, "Crystal field parameters for Eu3+ in KY3F10," J. Chem. Phys. 65, 89-94 (1976).
    [CrossRef]
  32. J.-P. R. Wells, M. Yamaga, T. P. J. Han, and H. G. Gallagher, "Infrared absorption, laser excitation, and crystal-field analyses of the C4v symmetry centre in KY3F10 doped with Pr3+," J. Phys. Condens. Matter 12, 5297-5306 (2000).
    [CrossRef]
  33. D. S. Sumita and T. Y. Fan, "Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media," Opt. Lett. 19, 1343-1345 (1994).
    [CrossRef]
  34. N. Uehara, K. Ueda, and Y. Kubota, "Spectroscopic measurement of a high-concentration Yb3+:LiYF4 crystal," Jpn. J. Appl. Phys., Part 2 35, L499-L501 (1996).
    [CrossRef]
  35. M. P. Hehlen, "Effect of radiation trapping on measured excited-state lifetimes in solids," in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series, S.A.Payne and C.Pollock, eds. (Optical Society of America, 1996), 530.
  36. H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, "Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders," Phys. Rev. B 25, 1467-1473 (1982).
    [CrossRef]
  37. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers," IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
    [CrossRef]
  38. M. J. Weber, "Optical properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3," Phys. Rev. B 4, 3153-3159 (1971).
    [CrossRef]
  39. I. R. Martín, Y. Guyot, M. F. Joubert, R. Yu. Abdulsabirov, S. L. Korableva, and V. V. Semashko, "Stark level structure and oscillator strengths of Nd3+ ion in different fluoride single crystals," J. Alloys Compd. 323-324, 763-767 (2001).
    [CrossRef]
  40. L. Zhang and H. Hu, "The effect of OH− on IR emission of Nd3+, Yb3+, and Er3+ doped tetraphosphate glasses," J. Phys. Chem. Solids 63, 575-579 (2002).
    [CrossRef]
  41. P. Yang, P. Deng, and Z. Yin, "Concentration quenching in Yb:YAG," J. Lumin. 97, 51-54 (2002).
    [CrossRef]
  42. Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, "Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions," Opt. Mater. 5, 127-136 (1996).
    [CrossRef]
  43. F. Auzel, "A fundamental self-generated quenching center for lanthanide-doped high-purity solids," J. Lumin. 100, 125-130 (2002).
    [CrossRef]
  44. G. Boulon, "Why so deep research on Yb3+-doped optical inorganic materials?," J. Alloys Compd. (to be published).

2007 (3)

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, "Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications," J. Lumin. 122-123, 444-446 (2007).
[CrossRef]

P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, "Diode-pumped Pr3+KY3F10 red laser," Opt. Lett. 32, 1462-1464 (2007).
[CrossRef] [PubMed]

K. J. Kim, A. Jouini, A. Yoshikawa, R. Simura, G. Boulon, and T. Fukuda, "Growth and optical properties of Pr,Yb-codoped KY3F10 fluoride single crystals for up-conversion visible luminescence," J. Cryst. Growth 299, 171-177 (2007).
[CrossRef]

2006 (4)

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: concentration quenching analysis and laser optimization," Opt. Mater. 28, 1-8 (2006).
[CrossRef]

A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, "Growth, spectroscopic, and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal," J. Opt. Soc. Am. B 23, 676-683 (2006).
[CrossRef]

G. Boulon, M. Ito, C. Goutaudier, and Y. Guyot, "Advances in growth of fiber crystal by the LHPG technique. Application to the optimization of Yb[3+]-doped CaF CaF[2] laser crystals," J. Cryst. Growth 292, 230-235 (2006).
[CrossRef]

S. M. Kaczmarek, A. Bensalah, and G. Boulon, "γ-ray induced color centers in pure and Yb doped LiYF4 and LiLuF4 single crystals," Opt. Mater. 28, 123-128 (2006).
[CrossRef]

2005 (1)

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: spectroscopic properties and assignment of energy levels," Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

2004 (4)

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, "Crystal growth, Yb3+ spectroscopy, concentration quenching analysis, and potentiality of laser emission in Ca1−XYbXF2+X," J. Phys. Condens. Matter 16, 1501-1521 (2004).
[CrossRef]

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, "Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality," Opt. Mater. 26, 375-383 (2004).
[CrossRef]

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon, "From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals," Mol. Phys. 102, 1119-1132 (2004).
[CrossRef]

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, "Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4," J. Alloys Compd. 380, 15-26 (2004).
[CrossRef]

2003 (2)

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3," Opt. Mater. 24, 103-109 (2003).
[CrossRef]

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

2002 (6)

L. Laversenne, S. Kairouani, Y. Guyot, C. Goutaudier, G. Boulon, and M. Th. Cohen-Adad, "Correlation between dopant content and excited-state dynamics properties inEr3+-Yb3+-codoped Y2O3 by using a new combinatorial method," Opt. Mater. 19, 59-66 (2002).
[CrossRef]

L. Laversenne, C. Goutaudier, Y. Guyot, M. Th. Cohen-Adad, and G. Boulon, "Search of optimized trivalent ytterbium doped-inorganic crystals for laser applications," J. Alloys Compd. 341, 214-219 (2002).
[CrossRef]

A. Brenier and G. Boulon, "Overview of the best Yb3+-doped laser crystals," J. Alloys Compd. 323-324, 210-213 (2002).

L. Zhang and H. Hu, "The effect of OH− on IR emission of Nd3+, Yb3+, and Er3+ doped tetraphosphate glasses," J. Phys. Chem. Solids 63, 575-579 (2002).
[CrossRef]

P. Yang, P. Deng, and Z. Yin, "Concentration quenching in Yb:YAG," J. Lumin. 97, 51-54 (2002).
[CrossRef]

F. Auzel, "A fundamental self-generated quenching center for lanthanide-doped high-purity solids," J. Lumin. 100, 125-130 (2002).
[CrossRef]

2001 (6)

G. L. Bourdet, "New evaluation of ytterbium-doped materials for CW laser applications," Opt. Commun. 198, 411-415 (2001).
[CrossRef]

A. Brenier and G. Boulon, "New criteria to choose the best Yb3+-doped laser crystals," Europhys. Lett. 55, 647-651 (2001).
[CrossRef]

I. R. Martín, Y. Guyot, M. F. Joubert, R. Yu. Abdulsabirov, S. L. Korableva, and V. V. Semashko, "Stark level structure and oscillator strengths of Nd3+ ion in different fluoride single crystals," J. Alloys Compd. 323-324, 763-767 (2001).
[CrossRef]

A. Braud, P. Y. Tigréat, J. L. Doualan, and R. Moncorgé, "Spectroscopy and cw operation of a 1.85 μmTm:KY3F10 laser," Appl. Phys. B 72, 909-911 (2001).
[CrossRef]

F. Auzel, "On the maximum splitting of the (F7/22) ground state in Yb3+-doped solid state laser materials," J. Lumin. 93, 129-135 (2001).
[CrossRef]

P.-H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, "Spectroscopic and crystal-field analysis of new Yb-doped laser materials," J. Phys. Condens. Matter 13, 5427-5447 (2001).
[CrossRef]

2000 (1)

J.-P. R. Wells, M. Yamaga, T. P. J. Han, and H. G. Gallagher, "Infrared absorption, laser excitation, and crystal-field analyses of the C4v symmetry centre in KY3F10 doped with Pr3+," J. Phys. Condens. Matter 12, 5297-5306 (2000).
[CrossRef]

1999 (2)

A. Lupei, V. Lupei, C. Presura, V. N. Enaki, and A. Petraru, "Electron-phonon coupling effects on Yb3+ spectra in several laser crystals," J. Phys. Condens. Matter 11, 3769-3778 (1999).
[CrossRef]

J.-P. R.. Wells, A. Sugiyama, T. P. J. Han, and H. G. Gallagher, "Laser site selective excitation of KY3F10-doped with samarium," J. Lumin. 85, 91-102 (1999).
[CrossRef]

1998 (1)

A. P. Ayala, M. A. S. Oliveira, J.-Y. Gesland, and R. L. Moreira, "Electrical and dielectric investigations of the conduction processes in KY3F10 crystals," J. Phys. Condens. Matter 10, 5161-5164 (1998).
[CrossRef]

1997 (1)

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers," IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

1996 (2)

N. Uehara, K. Ueda, and Y. Kubota, "Spectroscopic measurement of a high-concentration Yb3+:LiYF4 crystal," Jpn. J. Appl. Phys., Part 2 35, L499-L501 (1996).
[CrossRef]

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, "Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions," Opt. Mater. 5, 127-136 (1996).
[CrossRef]

1994 (1)

1993 (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

1987 (1)

R. Yu. Abdulsabirov, A. V. Vinokurov, V. A. Ivanshin, I. N. Kurkin, and E. A. Pudovik, "Optical spectra and spin lattice relaxation of rare earth ions in KY3F10 crystals," Opt. Spectrosc. 63, 55-59 (1987).

1982 (1)

H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, "Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders," Phys. Rev. B 25, 1467-1473 (1982).
[CrossRef]

1981 (1)

M. F. Joubert, G. Boulon, and F. Gaume, "Energy transfer between the Eu2+ sites in KY3F10 single crystals," Chem. Phys. Lett. 80, 367-370 (1981).
[CrossRef]

1976 (1)

P. Porcher and P. Caro, "Crystal field parameters for Eu3+ in KY3F10," J. Chem. Phys. 65, 89-94 (1976).
[CrossRef]

1971 (1)

M. J. Weber, "Optical properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3," Phys. Rev. B 4, 3153-3159 (1971).
[CrossRef]

1967 (1)

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, "Energy levels of Yb3+ in gallium and aluminum garnets. I. Spectra," Phys. Rev. 159, 245-251 (1967).
[CrossRef]

Appl. Phys. B (1)

A. Braud, P. Y. Tigréat, J. L. Doualan, and R. Moncorgé, "Spectroscopy and cw operation of a 1.85 μmTm:KY3F10 laser," Appl. Phys. B 72, 909-911 (2001).
[CrossRef]

Chem. Phys. Lett. (1)

M. F. Joubert, G. Boulon, and F. Gaume, "Energy transfer between the Eu2+ sites in KY3F10 single crystals," Chem. Phys. Lett. 80, 367-370 (1981).
[CrossRef]

Europhys. Lett. (1)

A. Brenier and G. Boulon, "New criteria to choose the best Yb3+-doped laser crystals," Europhys. Lett. 55, 647-651 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+-doped crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers," IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).
[CrossRef]

J. Alloys Compd. (4)

I. R. Martín, Y. Guyot, M. F. Joubert, R. Yu. Abdulsabirov, S. L. Korableva, and V. V. Semashko, "Stark level structure and oscillator strengths of Nd3+ ion in different fluoride single crystals," J. Alloys Compd. 323-324, 763-767 (2001).
[CrossRef]

A. Brenier and G. Boulon, "Overview of the best Yb3+-doped laser crystals," J. Alloys Compd. 323-324, 210-213 (2002).

L. Laversenne, C. Goutaudier, Y. Guyot, M. Th. Cohen-Adad, and G. Boulon, "Search of optimized trivalent ytterbium doped-inorganic crystals for laser applications," J. Alloys Compd. 341, 214-219 (2002).
[CrossRef]

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, "Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+:YLiF4," J. Alloys Compd. 380, 15-26 (2004).
[CrossRef]

J. Appl. Phys. (1)

A. Yoshikawa, G. Boulon, L. Laversenne, H. Canibano, K. Lebbou, A. Collombet, Y. Guyot, and T. Fukuda, "Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals," J. Appl. Phys. 94, 5479-5488 (2003).
[CrossRef]

J. Chem. Phys. (1)

P. Porcher and P. Caro, "Crystal field parameters for Eu3+ in KY3F10," J. Chem. Phys. 65, 89-94 (1976).
[CrossRef]

J. Cryst. Growth (2)

K. J. Kim, A. Jouini, A. Yoshikawa, R. Simura, G. Boulon, and T. Fukuda, "Growth and optical properties of Pr,Yb-codoped KY3F10 fluoride single crystals for up-conversion visible luminescence," J. Cryst. Growth 299, 171-177 (2007).
[CrossRef]

G. Boulon, M. Ito, C. Goutaudier, and Y. Guyot, "Advances in growth of fiber crystal by the LHPG technique. Application to the optimization of Yb[3+]-doped CaF CaF[2] laser crystals," J. Cryst. Growth 292, 230-235 (2006).
[CrossRef]

J. Lumin. (5)

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, "Spectroscopic properties and quenching processes of Yb3+ in fluoride single crystals for laser applications," J. Lumin. 122-123, 444-446 (2007).
[CrossRef]

J.-P. R.. Wells, A. Sugiyama, T. P. J. Han, and H. G. Gallagher, "Laser site selective excitation of KY3F10-doped with samarium," J. Lumin. 85, 91-102 (1999).
[CrossRef]

F. Auzel, "On the maximum splitting of the (F7/22) ground state in Yb3+-doped solid state laser materials," J. Lumin. 93, 129-135 (2001).
[CrossRef]

P. Yang, P. Deng, and Z. Yin, "Concentration quenching in Yb:YAG," J. Lumin. 97, 51-54 (2002).
[CrossRef]

F. Auzel, "A fundamental self-generated quenching center for lanthanide-doped high-purity solids," J. Lumin. 100, 125-130 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

L. Zhang and H. Hu, "The effect of OH− on IR emission of Nd3+, Yb3+, and Er3+ doped tetraphosphate glasses," J. Phys. Chem. Solids 63, 575-579 (2002).
[CrossRef]

J. Phys. Condens. Matter (5)

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, "Crystal growth, Yb3+ spectroscopy, concentration quenching analysis, and potentiality of laser emission in Ca1−XYbXF2+X," J. Phys. Condens. Matter 16, 1501-1521 (2004).
[CrossRef]

P.-H. Haumesser, R. Gaume, B. Viana, E. Antic-Fidancev, and D. Vivien, "Spectroscopic and crystal-field analysis of new Yb-doped laser materials," J. Phys. Condens. Matter 13, 5427-5447 (2001).
[CrossRef]

J.-P. R. Wells, M. Yamaga, T. P. J. Han, and H. G. Gallagher, "Infrared absorption, laser excitation, and crystal-field analyses of the C4v symmetry centre in KY3F10 doped with Pr3+," J. Phys. Condens. Matter 12, 5297-5306 (2000).
[CrossRef]

A. P. Ayala, M. A. S. Oliveira, J.-Y. Gesland, and R. L. Moreira, "Electrical and dielectric investigations of the conduction processes in KY3F10 crystals," J. Phys. Condens. Matter 10, 5161-5164 (1998).
[CrossRef]

A. Lupei, V. Lupei, C. Presura, V. N. Enaki, and A. Petraru, "Electron-phonon coupling effects on Yb3+ spectra in several laser crystals," J. Phys. Condens. Matter 11, 3769-3778 (1999).
[CrossRef]

Jpn. J. Appl. Phys., Part 2 (1)

N. Uehara, K. Ueda, and Y. Kubota, "Spectroscopic measurement of a high-concentration Yb3+:LiYF4 crystal," Jpn. J. Appl. Phys., Part 2 35, L499-L501 (1996).
[CrossRef]

Mol. Phys. (1)

G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, and J. C. Gâcon, "From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals," Mol. Phys. 102, 1119-1132 (2004).
[CrossRef]

Opt. Commun. (1)

G. L. Bourdet, "New evaluation of ytterbium-doped materials for CW laser applications," Opt. Commun. 198, 411-415 (2001).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (7)

L. Laversenne, S. Kairouani, Y. Guyot, C. Goutaudier, G. Boulon, and M. Th. Cohen-Adad, "Correlation between dopant content and excited-state dynamics properties inEr3+-Yb3+-codoped Y2O3 by using a new combinatorial method," Opt. Mater. 19, 59-66 (2002).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part I: spectroscopic properties and assignment of energy levels," Opt. Mater. 27, 1658-1663 (2005).
[CrossRef]

Y. Guyot, H. Canibano, C. Goutaudier, A. Novoselov, A. Yoshikawa, T. Fukuda, and G. Boulon, "Yb3+-doped Gd3Ga5O12 garnet single crystals grown by the micro-pulling down technique for laser application. Part 2: concentration quenching analysis and laser optimization," Opt. Mater. 28, 1-8 (2006).
[CrossRef]

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3," Opt. Mater. 24, 103-109 (2003).
[CrossRef]

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, "Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality," Opt. Mater. 26, 375-383 (2004).
[CrossRef]

S. M. Kaczmarek, A. Bensalah, and G. Boulon, "γ-ray induced color centers in pure and Yb doped LiYF4 and LiLuF4 single crystals," Opt. Mater. 28, 123-128 (2006).
[CrossRef]

Y. Guyot, R. Moncorgé, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, "Luminescence properties of Y2O3 single crystals doped with Pr3+ or Tm3+ and codoped with Yb3+, Tb3+ or Ho3+ ions," Opt. Mater. 5, 127-136 (1996).
[CrossRef]

Opt. Spectrosc. (1)

R. Yu. Abdulsabirov, A. V. Vinokurov, V. A. Ivanshin, I. N. Kurkin, and E. A. Pudovik, "Optical spectra and spin lattice relaxation of rare earth ions in KY3F10 crystals," Opt. Spectrosc. 63, 55-59 (1987).

Phys. Rev. (1)

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, "Energy levels of Yb3+ in gallium and aluminum garnets. I. Spectra," Phys. Rev. 159, 245-251 (1967).
[CrossRef]

Phys. Rev. B (2)

H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, "Fluorescence lifetimes for neodymium-doped yttrium aluminum garnet and yttrium oxide powders," Phys. Rev. B 25, 1467-1473 (1982).
[CrossRef]

M. J. Weber, "Optical properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3," Phys. Rev. B 4, 3153-3159 (1971).
[CrossRef]

Other (3)

G. Boulon, "Why so deep research on Yb3+-doped optical inorganic materials?," J. Alloys Compd. (to be published).

M. P. Hehlen, "Effect of radiation trapping on measured excited-state lifetimes in solids," in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series, S.A.Payne and C.Pollock, eds. (Optical Society of America, 1996), 530.

M. Ito, C. Goutaudier, K. Lebbou, S. Hraiech, and G. Boulon, "Growth of Yb3+:KY3F10 single crystals by laser heated pedestal growth (LHPG) technique," J. Cryst. Growth (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Room temperature absorption and emission (under λ exc = 932     nm ) spectra of 0.5% Yb 3 + : K Y 3 F 10 crystal prepared using the LHPG method.

Fig. 2
Fig. 2

Low temperature ( T = 12 K ) Absorption and emission (under λ exc = 930 nm ) spectra of 0.5% Yb 3 + : K Y 3 F 10 crystal prepared using the LHPG method.

Fig. 3
Fig. 3

Comparison of absorption, emission, and Raman spectra from the same origin. Two positions of the origin have been considered from the 5 1 and the 5 2 zero-phonon resonant transition lines, respectively.

Fig. 4
Fig. 4

Energy level diagram of Yb 3 + in K Y 3 F 10 , corresponding to the different possible interpretations at RT and their related points on the barycenter plot for Yb 3 + -doped host crystals by taking the linear relationship with slope equal to unity.

Fig. 5
Fig. 5

Room temperature emission (under λ exc = 932 nm ) spectra of three different Yb 3 + concentrations.

Fig. 6
Fig. 6

F 5 2 2 experimental decay time dependence on dopant concentration at RT. λ exc = 930 nm , λ measure = 975 nm , respectively. The continuous curve indicates the theoretical fittings by Eq. (5a), and the dotted curve indicates the theoretical fittings by Eq. (5b).

Fig. 7
Fig. 7

Visible emission spectra of 20% Yb 3 + : K Y 3 F 10 crystals, prepared using the LHPG method, under λ = 935 nm excitation. (i), (ii), and (iii) correspond to gate width = 20 , 100 μ s , and 1 ms , respectively. Gate delay = 0 s for all measurements. Dotted curves indicate the convolution from IR emission spectra.

Fig. 8
Fig. 8

Energy levels diagram of (a) Yb 3 + , Er 3 + , and Tm 3 + and (b) Yb 3 + pairs. Energy transfer processes and transitions are shown.

Fig. 9
Fig. 9

Correction of the experimental decay times with the self-trapping effect according to Eq. (2). Dotted curve indicates the theoretical curve for limited diffusion case according to Eq. (3). Continuous curve indicates the optimization of the optical gain by the product τ ( N ) N .

Fig. 10
Fig. 10

Gain cross sections curves σ g from Eq. (7) for (b) Yb 3 + -doped K Y 3 F 10 as compared with (a) Yb 3 + -doped Ca F 2 and (c) Yb 3 + -doped Li Y F 4 .

Fig. 11
Fig. 11

Position of K Y 3 F 10 in the figure of merit of Yb 3 + -doped crystals: laser oscillator output yield ( P out P pump ) and amplifier small-signal gain.

Tables (1)

Tables Icon

Table 1 Determination of Impurities by HR-GDMS for 5% Yb 3 + -Doped K Y 3 F 10 Grown Using the CZ Method

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

1 τ rad = A i f = g f g i 8 π n 2 c λ 0 4 σ f i ( λ ) d λ ,
τ t = τ i ( 1 + σ N l ) ,
τ ( N ) = τ rad [ 1 + ( 9 2 π ) ( N N 0 ) 2 ] = τ w [ 1 + ( 9 2 π ) ( N N 0 ) 2 ] ,
τ ( N ) = τ w [ 1 + 1.45 ( N N 0 S S ) exp ( β Δ E 4 ) ] ,
τ ( N ) = τ w ( 1 + σ N l ) 1 + ( 9 2 π ) ( N N 0 ) 2 ,
τ ( N ) = τ w ( 1 + σ N l ) 1 + 1.45 ( N N 0 S S ) exp ( β Δ E 4 ) .
G = exp [ σ g σ a N τ ( N ) l ] ,
σ g ( λ ) = β σ em ( λ ) ( 1 β ) σ abs ( λ ) ,

Metrics