Abstract

We experimentally investigate the parameters affecting parametric transfer in a synchronously pumped optical parametric oscillator for indirect shaping of mid-infrared ultrashort pulses and make comparisons with previously reported numerical modeling. The individual effects of the parameters are discussed in detail. We conclude that signal bandwidth narrowing, minimal signal amplification, large pump depletion, cavity length tuning, and minimal pump and idler temporal walk-off are required for high fidelity transfer, which we are able to demonstrate for a strongly chirped pump pulse.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. S. Tan and W. S. Warren, "Mid infrared pulse shaping by optical parametric amplification and its application to optical free induction decay measurement," Opt. Express 11, 1021-1028 (2003).
    [CrossRef] [PubMed]
  2. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, "Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate," J. Opt. A, Pure Appl. Opt. 7, S408-S414 (2005).
    [CrossRef]
  3. H. K. Nienhuys, S. Woutersen, R. A. van Santen, and H. J. Bakker, "Mechanism for vibrational relaxation in water investigated by femtosecond infrared spectroscopy," J. Chem. Phys. 111, 1494-1500 (1999).
    [CrossRef]
  4. L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
    [CrossRef]
  5. D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998).
    [CrossRef]
  6. T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
    [CrossRef]
  7. C. Meier and M. C. Heitz, "Laser control of vibrational excitation in carboxyhemoglobin: A quantum wave packet study," J. Chem. Phys. 123, 161-172 (2005).
    [CrossRef]
  8. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  9. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, "Micromirror SLM for femtosecond pulse shaping in the ultraviolet," Appl. Phys. B 76, 711-714 (2003).
    [CrossRef]
  10. M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, "Acousto-optical shaping of ultraviolet femtosecond pulses," Appl. Phys. B 80, 441-444 (2005).
    [CrossRef]
  11. V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-216 (1998).
    [CrossRef]
  12. G. M. H. Knippels, A. F. G. Vandermeer, R. Mols, P. W. Vanamersfoort, R. B. Vrijen, D. J. Maas, and L. D. Noordam, "Generation of frequency-chirped pulses in the far-infrared by means of a subpicosecond free-electron laser and an external pulse shaper," Opt. Commun. 118, 546-550 (1995).
    [CrossRef]
  13. R. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. Weiner, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3to20 μm," J. Opt. Soc. Am. B 17, 2086-2094 (2000).
    [CrossRef]
  14. S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, "Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation," Opt. Lett. 31, 838-840 (2006).
    [CrossRef] [PubMed]
  15. F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, "Controlled shaping of ultrafast electric field transients in the mid-infrared spectral range," Opt. Lett. 25, 1472-1474 (2000).
    [CrossRef]
  16. N. Belabas, J. Likforman, L. Canioni, B. Bousquet, and M. Joffre, "Coherent broadband pulse shaping in the mid infrared," Opt. Lett. 26, 743-745 (2001).
    [CrossRef]
  17. T. Witte, K. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
    [CrossRef]
  18. N. A. Naz, H. S. S. Hung, M. V. O'Connor, D. C. Hanna, and D. P. Shepherd, "Adaptively shaped mid-infrared pulses from a synchronously pumped optical parametric oscillator," Opt. Express 13, 8400-8405 (2005).
    [CrossRef] [PubMed]
  19. J. Prawiharjo, H. S. S. Hung, D. C. Hanna, and D. P. Shepherd, "Theoretical and numerical investigations of parametric transfer via difference-frequency generation for indirect mid-infrared pulse shaping," J. Opt. Soc. Am. B 24, 895-905 (2007).
    [CrossRef]
  20. J. Prawiharjo, H. S. S. Hung, D. C. Hanna, and D. P. Shepherd, "Numerical investigations of parametric transfer in synchronously pumped optical parametric oscillators for indirect mid-infrared pulse shaping," J. Opt. Soc. Am. B 24, 2484-2493 (2007).
    [CrossRef]
  21. D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
    [CrossRef]
  22. I. Cormack, W. Sibbett, and D. T. Reid, "Rapid measurement of ultrashort-pulse amplitude and phase from a two-photon absorption sonogram trace," J. Opt. Soc. Am. B 18, 1377-1382 (2001).
    [CrossRef]

2007

2006

2005

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, "Acousto-optical shaping of ultraviolet femtosecond pulses," Appl. Phys. B 80, 441-444 (2005).
[CrossRef]

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, "Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate," J. Opt. A, Pure Appl. Opt. 7, S408-S414 (2005).
[CrossRef]

C. Meier and M. C. Heitz, "Laser control of vibrational excitation in carboxyhemoglobin: A quantum wave packet study," J. Chem. Phys. 123, 161-172 (2005).
[CrossRef]

N. A. Naz, H. S. S. Hung, M. V. O'Connor, D. C. Hanna, and D. P. Shepherd, "Adaptively shaped mid-infrared pulses from a synchronously pumped optical parametric oscillator," Opt. Express 13, 8400-8405 (2005).
[CrossRef] [PubMed]

2003

H. S. Tan and W. S. Warren, "Mid infrared pulse shaping by optical parametric amplification and its application to optical free induction decay measurement," Opt. Express 11, 1021-1028 (2003).
[CrossRef] [PubMed]

T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
[CrossRef]

L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
[CrossRef]

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, "Micromirror SLM for femtosecond pulse shaping in the ultraviolet," Appl. Phys. B 76, 711-714 (2003).
[CrossRef]

T. Witte, K. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
[CrossRef]

2001

2000

1999

H. K. Nienhuys, S. Woutersen, R. A. van Santen, and H. J. Bakker, "Mechanism for vibrational relaxation in water investigated by femtosecond infrared spectroscopy," J. Chem. Phys. 111, 1494-1500 (1999).
[CrossRef]

1998

D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998).
[CrossRef]

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-216 (1998).
[CrossRef]

1997

1995

G. M. H. Knippels, A. F. G. Vandermeer, R. Mols, P. W. Vanamersfoort, R. B. Vrijen, D. J. Maas, and L. D. Noordam, "Generation of frequency-chirped pulses in the far-infrared by means of a subpicosecond free-electron laser and an external pulse shaper," Opt. Commun. 118, 546-550 (1995).
[CrossRef]

Appl. Phys. B

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, "Micromirror SLM for femtosecond pulse shaping in the ultraviolet," Appl. Phys. B 76, 711-714 (2003).
[CrossRef]

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, "Acousto-optical shaping of ultraviolet femtosecond pulses," Appl. Phys. B 80, 441-444 (2005).
[CrossRef]

T. Witte, K. Kompa, and M. Motzkus, "Femtosecond pulse shaping in the mid infrared by difference-frequency mixing," Appl. Phys. B 76, 467-471 (2003).
[CrossRef]

Chem. Phys.

V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207-216 (1998).
[CrossRef]

Chem. Phys. Lett.

D. J. Maas, D. I. Duncan, R. B. Vrijen, W. J. van der Zande, and L. D. Noordam, "Vibrational ladder climbing in NO by (sub)picosecond frequency-chirped infrared laser pulses," Chem. Phys. Lett. 290, 75-80 (1998).
[CrossRef]

J. Chem. Phys.

T. Witte, T. Hornung, L. Windhorn, D. Proch, R. de Vivie-Riedle, M. Motzkus, and K. L. Kompa, "Controlling molecular ground-state dissociation by optimizing vibrational ladder climbing," J. Chem. Phys. 118, 2021-2024 (2003).
[CrossRef]

C. Meier and M. C. Heitz, "Laser control of vibrational excitation in carboxyhemoglobin: A quantum wave packet study," J. Chem. Phys. 123, 161-172 (2005).
[CrossRef]

H. K. Nienhuys, S. Woutersen, R. A. van Santen, and H. J. Bakker, "Mechanism for vibrational relaxation in water investigated by femtosecond infrared spectroscopy," J. Chem. Phys. 111, 1494-1500 (1999).
[CrossRef]

L. Windhorn, J. S. Yeston, T. Witte, W. Fuss, M. Motzkus, D. Proch, K. L. Kompa, and C. B. Moore, "Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale," J. Chem. Phys. 119, 641-645 (2003).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, "Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate," J. Opt. A, Pure Appl. Opt. 7, S408-S414 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

G. M. H. Knippels, A. F. G. Vandermeer, R. Mols, P. W. Vanamersfoort, R. B. Vrijen, D. J. Maas, and L. D. Noordam, "Generation of frequency-chirped pulses in the far-infrared by means of a subpicosecond free-electron laser and an external pulse shaper," Opt. Commun. 118, 546-550 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of the SPOPO setup.

Fig. 2
Fig. 2

(a) SPOPO signal (solid circles) and idler (open circles) wavelengths corresponding to the five different poling periods used, (b) pump-idler TWO (open circles) and pump-signal TWO (solid circles) as a function of the idler wavelength for operation at 110 ° C . The data points correspond to the discrete idler wavelengths from the poling periods available.

Fig. 3
Fig. 3

Schematic of the cross correlation sonogram setup.

Fig. 4
Fig. 4

Sonogram data of the input pump pulse: (a) measured sonogram, (b) retrieved sonogram, (c) measured (circles) and retrieved (solid curve) autocorrelation traces, and (d) measured (circles) and retrieved (solid curve) spectra with the retrieved spectral phase.

Fig. 5
Fig. 5

Idler sonogram data for signal bandwidths of 1.3 (first column), 0.8 (second column), and 0.5 nm (third column). (a)–(c) Retrieved sonograms, (d)–(f) measured (circles) and retrieved (solid curve) autocorrelations, and (g)–(i) measured (circles) and retrieved (solid curve) spectra with the retrieved spectral phases (solid curve) and measured pump spectrum (dashed curve) for comparison.

Fig. 6
Fig. 6

Measured pump (dashed curve) and idler spectra (solid curve) for increasing input pump power at (a) 2, (b) 3, (c) 4, (d) 5, and (e) 6 times above oscillation threshold.

Fig. 7
Fig. 7

(a) Pump depletion and (b) spectral transfer fidelity as functions of the average input pump power. The points represent data, and the lines are a guide for the eye.

Fig. 8
Fig. 8

Measured idler spectra (solid curve) and input pump spectrum (dashed curve) for M4 reflectivites of (a) 65%, (b) 85%, and (c) 100%.

Fig. 9
Fig. 9

Measured idler spectra (solid curve) and input pump spectrum (dashed curve) for increasing signal delays of (a) 267 , (b) 133 , (c) 0, (d) + 133 fs , and (e) + 267 fs in an arrangement where the pump-idler TWO is 48 fs .

Fig. 10
Fig. 10

Measured idler spectra (solid curve) and input pump spectrum (dashed curve) for poling periods (a) 29.2, (b) 29.5, (c) 29.8, (d) 30.0, and (e) 30.2 μ m showing variation of spectral fidelity as pump-idler TWO varies.

Fig. 11
Fig. 11

Spectral fidelity z as a function of pump-idler TWO.

Fig. 12
Fig. 12

Measured idler spectra (solid curve) and input pump spectrum (dashed curve) for increasing signal delays of (a) 400 fs , (b) 133 fs , (c) 0 μ m , (d) + 266 fs , and (e) + 400 fs , in an arrangement where the pump-idler TWO is 589 fs .

Fig. 13
Fig. 13

(a) Pump depletion and (b) fidelity as functions of cavity length for SPOPO arrangements where λ s = 1505 (solid circles) and λ s = 1600 nm (open circles). The points represent data, and the lines are a guide for the eye.

Fig. 14
Fig. 14

Demonstration of high fidelity parametric transfer. (a) Retrieved pump sonogram, (b) retrieved idler sonogram for actively preserving parametric transfer, and (c) retrieved idler sonogram with no attempts to preserve transfer. (d) and (e) show the retrieved pump spectrum and phase (dashed curve) compared with the measured idler spectrum (circles) and retrieved idler spectrum and phase (solid curve) for the SPOPO arrangements maintaining and not maintaining high fidelity transfer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z = 1 E ̃ p ( Ω ) 2 E ̃ i ( Ω ) 2 d Ω [ E ̃ p ( Ω ) 4 d Ω E ̃ i ( Ω ) 4 d Ω ] 1 2 ,

Metrics