Abstract

Low-loss, high-integration photonic routing may be realized with a surface plasmon waveguide of the vertical metal/dielectric interface on a substrate. End-fire coupling of light into surface plasmon waves through a metal/dielectric/metal gap waveguide coupler and conversion of surface plasmon modes between the gap waveguides and single metal/dielectric interface waveguides is discussed. High efficiency in coupling of incident light into surface plasmons for waveguiding is quantitatively shown. The coupling efficiency of surface plasmons between the gap waveguide and the conjunct single interface waveguide can reach as high as more than 80% at the wavelength of 600nm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  2. S. A. Maier, "Plasmonics: the promise of highly integrated optical devices," IEEE J. Sel. Top. Quantum Electron. 12, 1671-1677 (2006).
    [CrossRef]
  3. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000).
    [CrossRef]
  4. S. A. Maier, M. L. Brongersma, and H. A. Atwater, "Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices," Appl. Phys. Lett. 78, 16-18 (2001).
    [CrossRef]
  5. D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004).
    [CrossRef]
  6. K. Tanaka, M. Tanaka, and T. Sugiyama, "Simulation of practical nanometric optical circuits based on surface. Plasmon polariton gap waveguide," Opt. Express 13, 256-266 (2004).
    [CrossRef]
  7. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005).
    [CrossRef] [PubMed]
  8. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, "Passive integrated optics elements based on long-range surface plasmon polaritons," J. Lightwave Technol. 24, 477-494 (2006).
    [CrossRef]
  9. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  10. K. Hasegawa, J. U. Nockel, and M. Deutsch, "Surface plasmon polariton propagation around bends at a metal-dielectric interface," Appl. Phys. Lett. 84, 1835-1837 (2004).
    [CrossRef]
  11. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, "Excitation of surface polaritons by end-fire coupling," Opt. Lett. 8, 386-388 (1983).
    [CrossRef] [PubMed]
  12. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998), pp. 354-357.
  13. I. P. Kaminow, W. L. Mammel, and H. P. Weber, "Metal-clad optical waveguides: analytical and experimental study," Appl. Opt. 13, 396-405 (1974).
    [CrossRef] [PubMed]
  14. F. J. Garcia-Vidal and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
    [CrossRef]
  15. R. G. Hunsperger, Integrated Optics, 4th ed. (Springer, 1995), pp. 94.

2006

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

S. A. Maier, "Plasmonics: the promise of highly integrated optical devices," IEEE J. Sel. Top. Quantum Electron. 12, 1671-1677 (2006).
[CrossRef]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, "Passive integrated optics elements based on long-range surface plasmon polaritons," J. Lightwave Technol. 24, 477-494 (2006).
[CrossRef]

2005

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005).
[CrossRef] [PubMed]

2004

K. Hasegawa, J. U. Nockel, and M. Deutsch, "Surface plasmon polariton propagation around bends at a metal-dielectric interface," Appl. Phys. Lett. 84, 1835-1837 (2004).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004).
[CrossRef]

K. Tanaka, M. Tanaka, and T. Sugiyama, "Simulation of practical nanometric optical circuits based on surface. Plasmon polariton gap waveguide," Opt. Express 13, 256-266 (2004).
[CrossRef]

2002

F. J. Garcia-Vidal and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

2001

S. A. Maier, M. L. Brongersma, and H. A. Atwater, "Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices," Appl. Phys. Lett. 78, 16-18 (2001).
[CrossRef]

2000

1983

1974

Atwater, H. A.

S. A. Maier, M. L. Brongersma, and H. A. Atwater, "Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices," Appl. Phys. Lett. 78, 16-18 (2001).
[CrossRef]

Berini, P.

Berolo, E.

Breukelaar, I.

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, and H. A. Atwater, "Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices," Appl. Phys. Lett. 78, 16-18 (2001).
[CrossRef]

Charbonneau, R.

Deutsch, M.

K. Hasegawa, J. U. Nockel, and M. Deutsch, "Surface plasmon polariton propagation around bends at a metal-dielectric interface," Appl. Phys. Lett. 84, 1835-1837 (2004).
[CrossRef]

Fafard, S.

Fan, S.

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004).
[CrossRef]

Han, Z.

Hasegawa, K.

K. Hasegawa, J. U. Nockel, and M. Deutsch, "Surface plasmon polariton propagation around bends at a metal-dielectric interface," Appl. Phys. Lett. 84, 1835-1837 (2004).
[CrossRef]

He, S.

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics, 4th ed. (Springer, 1995), pp. 94.

Kaminow, I. P.

Lahoud, N.

Lisicka-Shrzek, E.

Liu, L.

Maier, S. A.

S. A. Maier, "Plasmonics: the promise of highly integrated optical devices," IEEE J. Sel. Top. Quantum Electron. 12, 1671-1677 (2006).
[CrossRef]

S. A. Maier, M. L. Brongersma, and H. A. Atwater, "Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices," Appl. Phys. Lett. 78, 16-18 (2001).
[CrossRef]

Mammel, W. L.

Maradudin, A. A.

Martín-Moreno, L.

F. J. Garcia-Vidal and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Mattiussi, G.

Nockel, J. U.

K. Hasegawa, J. U. Nockel, and M. Deutsch, "Surface plasmon polariton propagation around bends at a metal-dielectric interface," Appl. Phys. Lett. 84, 1835-1837 (2004).
[CrossRef]

Ozbay, E.

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Pile, D. F. P.

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004).
[CrossRef]

Scales, C.

Stegeman, G. I.

Sugiyama, T.

Tanaka, K.

Tanaka, M.

Veronis, G.

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Wallis, R. F.

Weber, H. P.

Appl. Opt.

Appl. Phys. Lett.

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

K. Hasegawa, J. U. Nockel, and M. Deutsch, "Surface plasmon polariton propagation around bends at a metal-dielectric interface," Appl. Phys. Lett. 84, 1835-1837 (2004).
[CrossRef]

S. A. Maier, M. L. Brongersma, and H. A. Atwater, "Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices," Appl. Phys. Lett. 78, 16-18 (2001).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, "Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface," Appl. Phys. Lett. 85, 6323-6325 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. A. Maier, "Plasmonics: the promise of highly integrated optical devices," IEEE J. Sel. Top. Quantum Electron. 12, 1671-1677 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Phys. Rev. B

F. J. Garcia-Vidal and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Science

E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Other

R. G. Hunsperger, Integrated Optics, 4th ed. (Springer, 1995), pp. 94.

E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998), pp. 354-357.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of an MD interface waveguide in conjunction with an MDM waveguide. The arrows indicate wave propagation directions. The metal is assumed to be Ag and the dielectric is air.

Fig. 2
Fig. 2

Normalized propagation constants ( β k 0 ) and H z -field distributions of SP modes inside Ag/Air/Ag gap waveguides and an Ag/Air interface waveguide. Here, k 0 = 2 π λ 0 , λ 0 = 600 nm . (a) and (b) are real and imaginary parts of the normalized propagation constants; (c) and (d) are field distributions of gap waveguide modes for widths of 300 and 600 nm , respectively, compared with that of the SP mode at an Ag/Air interface. The inset of (b) shows definition of coordinates in the paper.

Fig. 3
Fig. 3

Dependence of funneling coefficients (a) and funneled power (b) on the gap widths of an Ag/Air/Ag gap waveguide as a TM-polarized plane wave of 600 nm wavelength is normally incident onto its end. The results calculated with the MCT method only involves TM0 mode in the gap, and the results calculated with the FDTD method include all possible modes in the gap.

Fig. 4
Fig. 4

Dependence of coupling efficiency on gap widths for SP coupling between an Ag/Air/Ag gap waveguide and a single Ag/Air interface waveguide. The calculations performed with the MCT method involves only TM0 mode of the gap waveguide. In the FDTD calculations, the inverse coupling configurations of (b) and (c) were evaluated. Corresponding vacuum wavelength of light is 600 nm . In (b), the length of gap waveguide is 2 μ m .

Fig. 5
Fig. 5

Instant distributions of H z 2 intensity for coupling of SPs between an Ag/Air/Ag gap waveguide and a single Ag/Air interface waveguide. In (a)–(c), plane waves are first coupled into the 2 μ m long gap waveguide of gap widths 150, 300 and 600 nm , respectively, and then coupled into the single interface waveguide. In (d), the SPs at the interface waveguide are coupled into a 300 - nm wide semi-infinite long gap waveguide. Corresponding vacuum wavelength of the light is 600 nm . Size of each image is 2 μ m × 6 μ m .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

W f = P 1 I 0 ,
Q f = I 1 I 0 = W f W g ,
η = [ H z ( 0 ) ( x ) H z ( 1 ) * ( x ) d x ] 2 H z ( 0 ) ( x ) H z ( 0 ) * ( x ) d x H z ( 1 ) ( x ) H z ( 1 ) * ( x ) d x .
P 1 = I 0 W 0 + ξ I 0 W g ,
P 1 = I 0 W 0 + I 0 W g = Q f I 0 W g ,
Q f = 1 + W 0 W g .
h ( x ) = { 0 ( x W g ) 1 ( x > W g ) } ,
η = [ H z ( 1 ) ( x ) H z ( 2 ) * ( x ) h ( x ) d x ] 2 H z ( 1 ) ( x ) H z ( 1 ) * ( x ) d x H z ( 2 ) ( x ) H z ( 2 ) * ( x ) d x ,

Metrics