Abstract

Programmable spatial beam shaping using phase modulation has proven to be an efficient tool for direct and flexible femtosecond laser marking at a Fourier plane of an objective but not well adapted to deep machining or to photowriting in the bulk of a material. We propose an optimization of the focal volume by use of an additional wavefront correction located in the Fourier plane that compensates the focus component in particular. Theoretical predictions involving nonparaxial scalar diffraction are compared to experimental results obtained with a 100kHz μJ-range femtosecond laser amplifier. Improvements in the beam characteristics, especially the Rayleigh range and the laser fluence, provided by such an additional wavefront control are underlined.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short-pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
    [CrossRef]
  2. D. von der Linde and K. Sokolowski-Tinten, "The physical mechanisms of short-pulse laser ablation," Appl. Surf. Sci. 154-155, 1-10 (2000).
    [CrossRef]
  3. S. K. Sundaram and E. Mazur, "Inducing and probing nonthermal transitions in semiconductors using femtosecond laser pulses," Nat. Mater. 1, 217-224 (2002).
    [CrossRef]
  4. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, "Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator," Opt. Lett. 26, 1516-1518 (2001).
    [CrossRef]
  5. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, "Fabrication of high-efficiency diffraction gratings in glass," Opt. Lett. 30, 352-354 (2005).
    [CrossRef] [PubMed]
  6. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003).
    [CrossRef] [PubMed]
  7. H. Segawa, S. Matsuo and H. Misawa, "Fabrication of fine-pitch TiO2-organic hybrid dot arrays using multiphoton absorption of femtosecond pulses," Appl. Phys. A: Solids Surf. 79, 407-409 (2004).
    [CrossRef]
  8. K. Konig, O. Krauss, and I. Riemann, "Intratissue surgery with 80-MHz nanojoule femtosecond laser pulses in the near infrared," Opt. Express 10, 171-176 (2002).
  9. W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, "Femtosecond laser disruption of subcellular organelles in a living cell," Opt. Express 12, 4203-4213 (2004).
    [CrossRef] [PubMed]
  10. J. Bourderionnet, N. Huot, A. Brignon, and J. P. Huignard, "Spatial mode control of a diode-pumped Nd:YAG laser by use of an intracavity holographic phase plate," Opt. Lett. 25, 1579-1581 (2000).
    [CrossRef]
  11. J. R. Leger, D. Chen, and Z. Wang, "Diffractive optical element for mode shaping of a Nd:YAG laser," Opt. Lett. 19, 108-110 (1994).
    [CrossRef] [PubMed]
  12. C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, "Beam delivery of femtosecond laser radiation by diffractive optical elements," Appl. Phys. A: Solids Surf. 67, 517-520 (1998).
    [CrossRef]
  13. S. C. Chapin, V. Germain, and E. R. Dufresne, "Automated trapping, assembly, and sorting with holographic optical tweezers," Opt. Express 14, 13095-13100 (2006).
    [CrossRef] [PubMed]
  14. D. M. Cottrell, J. M. Craven, and J. A. Davis, "Nondiffracting random intensity patterns," Opt. Lett. 32, 298-300 (2007).
    [CrossRef] [PubMed]
  15. C. Iemmi, J. Campos, J. C. Escalera, O. Lopez-Coronado, R. Gimeno, and M. J. Yzuel, "Depth of focus increase by multiplexing programmable diffractive lenses," Opt. Express 14, 10207-10219 (2006).
    [CrossRef] [PubMed]
  16. F. Druon, G. Chériaux, J. Faure, G. Vdovin, J. C. Chanteloup, J. Nees, M. Nantel, A. Maksimchuk, and G. Mourou, "Wave-front correction of femtosecond terawatt lasers by deformable mirrors," Opt. Lett. 23, 1043-1045 (1998).
    [CrossRef]
  17. O. Boyko, Th. A. Planchon, P. Mercère, C. Valentin, and Ph. Balcou, "Adaptive shaping of a focused intense laser beam into a doughnut mode," Opt. Commun. 246, 131-140 (2005).
    [CrossRef]
  18. N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, "100 kHz diffraction limited femtosecond laser machining," Appl. Phys. B: Lasers Opt. 80, 27-30 (2005).
    [CrossRef]
  19. N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, "Programmable spatial beam shaping of a 100-kHz amplified femtosecond laser," Opt. Lett. 30, 1479-1481 (2005).
    [CrossRef] [PubMed]
  20. N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, "Direct ultrafast microstructuring of materials using programmable beam shaping," Opt. Lasers Eng. 45, 737-741 (2007).
    [CrossRef]
  21. A. Ostendorf, G. Kamlage, and B. N. Chichkov, "Precise deep drilling of metals by femtosecond laser pulses," RIKEN Rev. 50, 87-89 (2003).
  22. L. Shah, J. Towney, M. Richardson, and K. Richardson, "Femtosecond laser deep hole drilling of silicate glasses in air," Appl. Surf. Sci. 183, 151-164 (2001).
    [CrossRef]
  23. W. Cai, T. J. Reber, and R. Piestun, "Computer-generated volume holograms fabricated by femtosecond laser micromachining," Opt. Lett. 31, 1836-1838 (2006).
    [CrossRef] [PubMed]
  24. J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly written of 1-to-N optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
    [CrossRef]
  25. G. Shabtay, "Three-dimensional beam forming and Ewald's surfaces," Opt. Commun. 226, 33-37 (2003).
    [CrossRef]
  26. G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. J. Laczic, M. J. Padgett, and J. Courtial, "Interactive applications in holographic optical tweezers of a multiplane Gerchberg-Saxton algorithm for three-dimensional light shaping," Opt. Express 12, 1665-1670 (2004).
    [CrossRef] [PubMed]
  27. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik (Stuttgart) 35, 237-246 (1972).
  28. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  29. K. Ballueder, P. Blair, P. Rudman, A. Waddie, and M. R. Taghizadeh, "Diffractive optics for high-power beam shaping applications," in Conference on Lasers and Electro-optics Europe, OSA Technical Digest Series (Optical Society of America, 2000), paper CThO3.
  30. A. E. Siegman, "Output beam propagation and beam quality from a multimode stable cavity laser," IEEE J. Quantum Electron. 29, 1212-1217 (1993).
    [CrossRef]
  31. D. Breitling, C. Föhl, F. Dausinger, T. Kononenko, and V. Konov, "Drilling of metals," in Femtosecond Technology for Technical and Medical Application, F.Dausinger and S.Nolte, eds. (Elsevier, 2004), pp 131-156.
  32. N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, "Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass," Opt. Express 15, 12344-12355 (2007).
    [CrossRef]
  33. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 0135171-5 (2005).
    [CrossRef]

2007 (3)

2006 (3)

2005 (6)

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, "Fabrication of high-efficiency diffraction gratings in glass," Opt. Lett. 30, 352-354 (2005).
[CrossRef] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, "Programmable spatial beam shaping of a 100-kHz amplified femtosecond laser," Opt. Lett. 30, 1479-1481 (2005).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 0135171-5 (2005).
[CrossRef]

O. Boyko, Th. A. Planchon, P. Mercère, C. Valentin, and Ph. Balcou, "Adaptive shaping of a focused intense laser beam into a doughnut mode," Opt. Commun. 246, 131-140 (2005).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, "100 kHz diffraction limited femtosecond laser machining," Appl. Phys. B: Lasers Opt. 80, 27-30 (2005).
[CrossRef]

J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly written of 1-to-N optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
[CrossRef]

2004 (3)

2003 (3)

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003).
[CrossRef] [PubMed]

G. Shabtay, "Three-dimensional beam forming and Ewald's surfaces," Opt. Commun. 226, 33-37 (2003).
[CrossRef]

A. Ostendorf, G. Kamlage, and B. N. Chichkov, "Precise deep drilling of metals by femtosecond laser pulses," RIKEN Rev. 50, 87-89 (2003).

2002 (3)

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

S. K. Sundaram and E. Mazur, "Inducing and probing nonthermal transitions in semiconductors using femtosecond laser pulses," Nat. Mater. 1, 217-224 (2002).
[CrossRef]

K. Konig, O. Krauss, and I. Riemann, "Intratissue surgery with 80-MHz nanojoule femtosecond laser pulses in the near infrared," Opt. Express 10, 171-176 (2002).

2001 (2)

2000 (2)

1998 (2)

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, "Beam delivery of femtosecond laser radiation by diffractive optical elements," Appl. Phys. A: Solids Surf. 67, 517-520 (1998).
[CrossRef]

F. Druon, G. Chériaux, J. Faure, G. Vdovin, J. C. Chanteloup, J. Nees, M. Nantel, A. Maksimchuk, and G. Mourou, "Wave-front correction of femtosecond terawatt lasers by deformable mirrors," Opt. Lett. 23, 1043-1045 (1998).
[CrossRef]

1996 (1)

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short-pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

1994 (1)

1993 (1)

A. E. Siegman, "Output beam propagation and beam quality from a multimode stable cavity laser," IEEE J. Quantum Electron. 29, 1212-1217 (1993).
[CrossRef]

1972 (1)

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik (Stuttgart) 35, 237-246 (1972).

Arakawa, N.

Audouard, E.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, "Direct ultrafast microstructuring of materials using programmable beam shaping," Opt. Lasers Eng. 45, 737-741 (2007).
[CrossRef]

N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, "Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass," Opt. Express 15, 12344-12355 (2007).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, "100 kHz diffraction limited femtosecond laser machining," Appl. Phys. B: Lasers Opt. 80, 27-30 (2005).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, "Programmable spatial beam shaping of a 100-kHz amplified femtosecond laser," Opt. Lett. 30, 1479-1481 (2005).
[CrossRef] [PubMed]

Balcou, Ph.

O. Boyko, Th. A. Planchon, P. Mercère, C. Valentin, and Ph. Balcou, "Adaptive shaping of a focused intense laser beam into a doughnut mode," Opt. Commun. 246, 131-140 (2005).
[CrossRef]

Ballueder, K.

K. Ballueder, P. Blair, P. Rudman, A. Waddie, and M. R. Taghizadeh, "Diffractive optics for high-power beam shaping applications," in Conference on Lasers and Electro-optics Europe, OSA Technical Digest Series (Optical Society of America, 2000), paper CThO3.

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 0135171-5 (2005).
[CrossRef]

Blair, P.

K. Ballueder, P. Blair, P. Rudman, A. Waddie, and M. R. Taghizadeh, "Diffractive optics for high-power beam shaping applications," in Conference on Lasers and Electro-optics Europe, OSA Technical Digest Series (Optical Society of America, 2000), paper CThO3.

Bourderionnet, J.

Boyko, O.

O. Boyko, Th. A. Planchon, P. Mercère, C. Valentin, and Ph. Balcou, "Adaptive shaping of a focused intense laser beam into a doughnut mode," Opt. Commun. 246, 131-140 (2005).
[CrossRef]

Breitling, D.

D. Breitling, C. Föhl, F. Dausinger, T. Kononenko, and V. Konov, "Drilling of metals," in Femtosecond Technology for Technical and Medical Application, F.Dausinger and S.Nolte, eds. (Elsevier, 2004), pp 131-156.

Brignon, A.

Cai, W.

Campos, J.

Chang, S.

J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly written of 1-to-N optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
[CrossRef]

Chanteloup, J. C.

Chapin, S. C.

Chen, D.

Chériaux, G.

Chichkov, B. N.

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003).
[CrossRef] [PubMed]

A. Ostendorf, G. Kamlage, and B. N. Chichkov, "Precise deep drilling of metals by femtosecond laser pulses," RIKEN Rev. 50, 87-89 (2003).

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short-pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 0135171-5 (2005).
[CrossRef]

Cottrell, D. M.

Courtial, J.

Craven, J. M.

Cronauer, C.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Dausinger, F.

D. Breitling, C. Föhl, F. Dausinger, T. Kononenko, and V. Konov, "Drilling of metals," in Femtosecond Technology for Technical and Medical Application, F.Dausinger and S.Nolte, eds. (Elsevier, 2004), pp 131-156.

Davis, J. A.

Domann, G.

Druon, F.

Dufresne, E. R.

Egbert, A.

Escalera, J. C.

Faure, J.

Flueraru, C.

J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly written of 1-to-N optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
[CrossRef]

Föhl, C.

D. Breitling, C. Föhl, F. Dausinger, T. Kononenko, and V. Konov, "Drilling of metals," in Femtosecond Technology for Technical and Medical Application, F.Dausinger and S.Nolte, eds. (Elsevier, 2004), pp 131-156.

Fröhlich, L.

Fujimoto, J. G.

Fukui, K.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik (Stuttgart) 35, 237-246 (1972).

Germain, V.

Gibson, G.

Gimeno, R.

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Grover, C. P.

J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly written of 1-to-N optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
[CrossRef]

Hartl, I.

Higashi, T.

Hirao, K.

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 0135171-5 (2005).
[CrossRef]

Houbertz, R.

Huignard, J. P.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, "Direct ultrafast microstructuring of materials using programmable beam shaping," Opt. Lasers Eng. 45, 737-741 (2007).
[CrossRef]

J. Bourderionnet, N. Huot, A. Brignon, and J. P. Huignard, "Spatial mode control of a diode-pumped Nd:YAG laser by use of an intracavity holographic phase plate," Opt. Lett. 25, 1579-1581 (2000).
[CrossRef]

Huignard, J.-P.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, "Programmable spatial beam shaping of a 100-kHz amplified femtosecond laser," Opt. Lett. 30, 1479-1481 (2005).
[CrossRef] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, "100 kHz diffraction limited femtosecond laser machining," Appl. Phys. B: Lasers Opt. 80, 27-30 (2005).
[CrossRef]

Huot, N.

Iemmi, C.

Ippen, E. P.

Isobe, K.

Itoh, K.

Jordan, P.

Kamlage, G.

A. Ostendorf, G. Kamlage, and B. N. Chichkov, "Precise deep drilling of metals by femtosecond laser pulses," RIKEN Rev. 50, 87-89 (2003).

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, "Beam delivery of femtosecond laser radiation by diffractive optical elements," Appl. Phys. A: Solids Surf. 67, 517-520 (1998).
[CrossRef]

Konig, K.

Kononenko, T.

D. Breitling, C. Föhl, F. Dausinger, T. Kononenko, and V. Konov, "Drilling of metals," in Femtosecond Technology for Technical and Medical Application, F.Dausinger and S.Nolte, eds. (Elsevier, 2004), pp 131-156.

Konov, V.

D. Breitling, C. Föhl, F. Dausinger, T. Kononenko, and V. Konov, "Drilling of metals," in Femtosecond Technology for Technical and Medical Application, F.Dausinger and S.Nolte, eds. (Elsevier, 2004), pp 131-156.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Kowalevicz, A. M.

Krauss, O.

Kuroiwa, Y.

Laczic, Z. J.

Larat, C.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, "Direct ultrafast microstructuring of materials using programmable beam shaping," Opt. Lasers Eng. 45, 737-741 (2007).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, "100 kHz diffraction limited femtosecond laser machining," Appl. Phys. B: Lasers Opt. 80, 27-30 (2005).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, "Programmable spatial beam shaping of a 100-kHz amplified femtosecond laser," Opt. Lett. 30, 1479-1481 (2005).
[CrossRef] [PubMed]

Leach, J.

Leger, J. R.

Liu, J.

J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly written of 1-to-N optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
[CrossRef]

Lopez-Coronado, O.

Maksimchuk, A.

Matsunaga, S.

Matsuo, S.

H. Segawa, S. Matsuo and H. Misawa, "Fabrication of fine-pitch TiO2-organic hybrid dot arrays using multiphoton absorption of femtosecond pulses," Appl. Phys. A: Solids Surf. 79, 407-409 (2004).
[CrossRef]

Mauclair, C.

Mazur, E.

S. K. Sundaram and E. Mazur, "Inducing and probing nonthermal transitions in semiconductors using femtosecond laser pulses," Nat. Mater. 1, 217-224 (2002).
[CrossRef]

Mercère, P.

O. Boyko, Th. A. Planchon, P. Mercère, C. Valentin, and Ph. Balcou, "Adaptive shaping of a focused intense laser beam into a doughnut mode," Opt. Commun. 246, 131-140 (2005).
[CrossRef]

Mermillod-Blondin, A.

Minoshima, K.

Misawa, H.

H. Segawa, S. Matsuo and H. Misawa, "Fabrication of fine-pitch TiO2-organic hybrid dot arrays using multiphoton absorption of femtosecond pulses," Appl. Phys. A: Solids Surf. 79, 407-409 (2004).
[CrossRef]

Momma, C.

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, "Beam delivery of femtosecond laser radiation by diffractive optical elements," Appl. Phys. A: Solids Surf. 67, 517-520 (1998).
[CrossRef]

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short-pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Mourou, G.

Nantel, M.

Narita, Y.

Nees, J.

Nolte, S.

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, "Beam delivery of femtosecond laser radiation by diffractive optical elements," Appl. Phys. A: Solids Surf. 67, 517-520 (1998).
[CrossRef]

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short-pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Ostendorf, A.

Padgett, M. J.

Piestun, R.

Planchon, Th. A.

O. Boyko, Th. A. Planchon, P. Mercère, C. Valentin, and Ph. Balcou, "Adaptive shaping of a focused intense laser beam into a doughnut mode," Opt. Commun. 246, 131-140 (2005).
[CrossRef]

Popall, M.

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 0135171-5 (2005).
[CrossRef]

Reber, T. J.

Richardson, K.

L. Shah, J. Towney, M. Richardson, and K. Richardson, "Femtosecond laser deep hole drilling of silicate glasses in air," Appl. Surf. Sci. 183, 151-164 (2001).
[CrossRef]

Richardson, M.

L. Shah, J. Towney, M. Richardson, and K. Richardson, "Femtosecond laser deep hole drilling of silicate glasses in air," Appl. Surf. Sci. 183, 151-164 (2001).
[CrossRef]

Riemann, I.

Rudman, P.

K. Ballueder, P. Blair, P. Rudman, A. Waddie, and M. R. Taghizadeh, "Diffractive optics for high-power beam shaping applications," in Conference on Lasers and Electro-optics Europe, OSA Technical Digest Series (Optical Society of America, 2000), paper CThO3.

Sanner, N.

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, "Direct ultrafast microstructuring of materials using programmable beam shaping," Opt. Lasers Eng. 45, 737-741 (2007).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, "100 kHz diffraction limited femtosecond laser machining," Appl. Phys. B: Lasers Opt. 80, 27-30 (2005).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, "Programmable spatial beam shaping of a 100-kHz amplified femtosecond laser," Opt. Lett. 30, 1479-1481 (2005).
[CrossRef] [PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik (Stuttgart) 35, 237-246 (1972).

Schulz, J.

Segawa, H.

H. Segawa, S. Matsuo and H. Misawa, "Fabrication of fine-pitch TiO2-organic hybrid dot arrays using multiphoton absorption of femtosecond pulses," Appl. Phys. A: Solids Surf. 79, 407-409 (2004).
[CrossRef]

Serbin, J.

Shabtay, G.

G. Shabtay, "Three-dimensional beam forming and Ewald's surfaces," Opt. Commun. 226, 33-37 (2003).
[CrossRef]

Shah, L.

L. Shah, J. Towney, M. Richardson, and K. Richardson, "Femtosecond laser deep hole drilling of silicate glasses in air," Appl. Surf. Sci. 183, 151-164 (2001).
[CrossRef]

Siegman, A. E.

A. E. Siegman, "Output beam propagation and beam quality from a multimode stable cavity laser," IEEE J. Quantum Electron. 29, 1212-1217 (1993).
[CrossRef]

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 0135171-5 (2005).
[CrossRef]

Sinclair, G.

Sokolowski-Tinten, K.

D. von der Linde and K. Sokolowski-Tinten, "The physical mechanisms of short-pulse laser ablation," Appl. Surf. Sci. 154-155, 1-10 (2000).
[CrossRef]

Stoian, R.

Sundaram, S. K.

S. K. Sundaram and E. Mazur, "Inducing and probing nonthermal transitions in semiconductors using femtosecond laser pulses," Nat. Mater. 1, 217-224 (2002).
[CrossRef]

Taghizadeh, M. R.

K. Ballueder, P. Blair, P. Rudman, A. Waddie, and M. R. Taghizadeh, "Diffractive optics for high-power beam shaping applications," in Conference on Lasers and Electro-optics Europe, OSA Technical Digest Series (Optical Society of America, 2000), paper CThO3.

Takeshima, N.

Tanaka, S.

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 0135171-5 (2005).
[CrossRef]

Towney, J.

L. Shah, J. Towney, M. Richardson, and K. Richardson, "Femtosecond laser deep hole drilling of silicate glasses in air," Appl. Surf. Sci. 183, 151-164 (2001).
[CrossRef]

Tunnermann, A.

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short-pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Tünnermann, A.

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, "Beam delivery of femtosecond laser radiation by diffractive optical elements," Appl. Phys. A: Solids Surf. 67, 517-520 (1998).
[CrossRef]

Valentin, C.

O. Boyko, Th. A. Planchon, P. Mercère, C. Valentin, and Ph. Balcou, "Adaptive shaping of a focused intense laser beam into a doughnut mode," Opt. Commun. 246, 131-140 (2005).
[CrossRef]

Vdovin, G.

von Alvensleben, F.

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, "Beam delivery of femtosecond laser radiation by diffractive optical elements," Appl. Phys. A: Solids Surf. 67, 517-520 (1998).
[CrossRef]

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short-pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

von der Linde, D.

D. von der Linde and K. Sokolowski-Tinten, "The physical mechanisms of short-pulse laser ablation," Appl. Surf. Sci. 154-155, 1-10 (2000).
[CrossRef]

Waddie, A.

K. Ballueder, P. Blair, P. Rudman, A. Waddie, and M. R. Taghizadeh, "Diffractive optics for high-power beam shaping applications," in Conference on Lasers and Electro-optics Europe, OSA Technical Digest Series (Optical Society of America, 2000), paper CThO3.

Wang, Z.

Watanabe, W.

Wellegehausen, B.

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short-pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Welling, H.

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short-pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Yao, E.

Yzuel, M. J.

Zhang, Z.

J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly written of 1-to-N optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
[CrossRef]

Appl. Phys. A: Solids Surf. (2)

H. Segawa, S. Matsuo and H. Misawa, "Fabrication of fine-pitch TiO2-organic hybrid dot arrays using multiphoton absorption of femtosecond pulses," Appl. Phys. A: Solids Surf. 79, 407-409 (2004).
[CrossRef]

C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, and A. Tünnermann, "Beam delivery of femtosecond laser radiation by diffractive optical elements," Appl. Phys. A: Solids Surf. 67, 517-520 (1998).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, "100 kHz diffraction limited femtosecond laser machining," Appl. Phys. B: Lasers Opt. 80, 27-30 (2005).
[CrossRef]

Appl. Surf. Sci. (2)

D. von der Linde and K. Sokolowski-Tinten, "The physical mechanisms of short-pulse laser ablation," Appl. Surf. Sci. 154-155, 1-10 (2000).
[CrossRef]

L. Shah, J. Towney, M. Richardson, and K. Richardson, "Femtosecond laser deep hole drilling of silicate glasses in air," Appl. Surf. Sci. 183, 151-164 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. E. Siegman, "Output beam propagation and beam quality from a multimode stable cavity laser," IEEE J. Quantum Electron. 29, 1212-1217 (1993).
[CrossRef]

J. Appl. Phys. (1)

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 0135171-5 (2005).
[CrossRef]

Nat. Mater. (1)

S. K. Sundaram and E. Mazur, "Inducing and probing nonthermal transitions in semiconductors using femtosecond laser pulses," Nat. Mater. 1, 217-224 (2002).
[CrossRef]

Opt. Commun. (5)

O. Boyko, Th. A. Planchon, P. Mercère, C. Valentin, and Ph. Balcou, "Adaptive shaping of a focused intense laser beam into a doughnut mode," Opt. Commun. 246, 131-140 (2005).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly written of 1-to-N optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
[CrossRef]

G. Shabtay, "Three-dimensional beam forming and Ewald's surfaces," Opt. Commun. 226, 33-37 (2003).
[CrossRef]

C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, and B. Wellegehausen, "Short-pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996).
[CrossRef]

Opt. Express (6)

Opt. Lasers Eng. (1)

N. Sanner, N. Huot, E. Audouard, C. Larat, and J. P. Huignard, "Direct ultrafast microstructuring of materials using programmable beam shaping," Opt. Lasers Eng. 45, 737-741 (2007).
[CrossRef]

Opt. Lett. (9)

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, "Fabrication of high-efficiency diffraction gratings in glass," Opt. Lett. 30, 352-354 (2005).
[CrossRef] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, and J.-P. Huignard, "Programmable spatial beam shaping of a 100-kHz amplified femtosecond laser," Opt. Lett. 30, 1479-1481 (2005).
[CrossRef] [PubMed]

W. Cai, T. J. Reber, and R. Piestun, "Computer-generated volume holograms fabricated by femtosecond laser micromachining," Opt. Lett. 31, 1836-1838 (2006).
[CrossRef] [PubMed]

J. R. Leger, D. Chen, and Z. Wang, "Diffractive optical element for mode shaping of a Nd:YAG laser," Opt. Lett. 19, 108-110 (1994).
[CrossRef] [PubMed]

F. Druon, G. Chériaux, J. Faure, G. Vdovin, J. C. Chanteloup, J. Nees, M. Nantel, A. Maksimchuk, and G. Mourou, "Wave-front correction of femtosecond terawatt lasers by deformable mirrors," Opt. Lett. 23, 1043-1045 (1998).
[CrossRef]

J. Bourderionnet, N. Huot, A. Brignon, and J. P. Huignard, "Spatial mode control of a diode-pumped Nd:YAG laser by use of an intracavity holographic phase plate," Opt. Lett. 25, 1579-1581 (2000).
[CrossRef]

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, "Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator," Opt. Lett. 26, 1516-1518 (2001).
[CrossRef]

D. M. Cottrell, J. M. Craven, and J. A. Davis, "Nondiffracting random intensity patterns," Opt. Lett. 32, 298-300 (2007).
[CrossRef] [PubMed]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003).
[CrossRef] [PubMed]

Optik (Stuttgart) (1)

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik (Stuttgart) 35, 237-246 (1972).

RIKEN Rev. (1)

A. Ostendorf, G. Kamlage, and B. N. Chichkov, "Precise deep drilling of metals by femtosecond laser pulses," RIKEN Rev. 50, 87-89 (2003).

Other (2)

K. Ballueder, P. Blair, P. Rudman, A. Waddie, and M. R. Taghizadeh, "Diffractive optics for high-power beam shaping applications," in Conference on Lasers and Electro-optics Europe, OSA Technical Digest Series (Optical Society of America, 2000), paper CThO3.

D. Breitling, C. Föhl, F. Dausinger, T. Kononenko, and V. Konov, "Drilling of metals," in Femtosecond Technology for Technical and Medical Application, F.Dausinger and S.Nolte, eds. (Elsevier, 2004), pp 131-156.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Beam-shaping geometry. PM, phase modulator; f , focal length of the Fourier lens. The phase function displayed on the PM is separated into a focus component (gray curve) and a residual quickly varying and small peak–valley value phase function (black curve). S, center of curvature of the focus component; S , image of S by the Fourier lens; F , Fourier plane; w Fourier , beam radius in the Fourier plane.

Fig. 2
Fig. 2

Intensity distributions obtained when a CCD camera is scanned along the optical axis before and after the Fourier plane (position 0) of a f = 76.2 mm converging lens. A w 0 = 4 mm Gaussian beam is incident on the phase modulator. a, experimental data; the beam shape is a 76 μ m width square top-hat. Its distance to the focal point is 800 ± 100 μ m , consistent with theoretical predictions (b).

Fig. 3
Fig. 3

Experimental setup demonstrating an optimization of the focal volume in the vicinity of the Fourier plane F 1 . The beam shape in F 1 is a square top-hat with η = 15.7 . A w 0 = 4 mm Gaussian beam is incident on the phase modulator PM. L 1 , Fourier lens with f 1 = 380 mm focal length; M 1 and M 2 , high reflectivity mirrors at 45° incidence angle at a wavelength λ = 800 nm ; M 3 , high reflectivity convex mirror at 0° incidence angle at λ = 800 nm . M 3 plays the role of the additional phase modulator; in this particular case, it is a fixed component. Its radius of curvature is R 3 = 80 mm , well adapted to compensate for the focus component of the phase distribution in the Fourier plane ( R = 40 mm ) . L 2 , imaging converging lens with f 2 = 150 mm focal length.

Fig. 4
Fig. 4

Intensity distributions obtained with the setup described in Fig. 3, the CCD camera is scanned along the optical axis before and after the image plane of L 2 . a, experimental data; the beam shape is a 760 μ m width square top-hat in agreement with theoretical predictions (b). The range of analysis ( ± 4 cm ) would enclose a hot spot if no focus correction were applied in F 1 .

Fig. 5
Fig. 5

Normalized fluence versus the axial position relative to the Fourier plane F 1 . The setup is described in Fig. 3. Calculations are conducted in the vicinity of F 1 . Solid curve, focus correction in F 1 ; dotted curve, overall wavefront correction in F 1 ; dashed curve, no wavefront correction.

Fig. 6
Fig. 6

Calculated normalized Rayleigh range as a function of η. Solid curve, analytical prediction for an overall wavefront correction in F 1 ; dotted curve, analytical prediction without any wavefront correction in F 1 . Squares, numerical simulations for an overall wavefront correction in F 1 ; solid circles, simulation without any wavefront correction in F 1 ; empty circles, simulations with a focus correction in F 1 .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

w x 2 = 4 I ( x , y ) d x d y x 2 I ( x , y ) d x d y ,
S F = f 2 R ,
R π w 0 2 λ η ,
E ( x , y ) = Ψ ( μ , ν ) exp [ j 2 π ( μ x + ν y ) ] exp { j k z [ 1 λ 2 ( μ 2 + ν 2 ) ] 1 2 } d μ d ν ,
E ( x , y ) = A 0 exp ( x 2 + y 2 w 0 2 ) exp [ j φ ( x , y ) ] .
τ ( x , y ) = exp { j 2 π λ [ ( x 2 + y 2 + f 2 ) 1 2 f ] } .
R Fourier = π f 2 λ a X 2 ,
Z r no correction ( 2 1 ) f 2 η λ π w 0 2 = ( 2 1 ) η Z r Gauss ,
Z r wave front correction = π w Fourier 2 λ M 2 = η 2 M 2 Z r Gauss ,

Metrics