Abstract

A theoretical model of a new integrated planar surface plasmon–polariton (SPP) refractive index sensor with a long period grating (LPG) is presented and comprehensively investigated. The main principle of operation of this device is based on high-efficiency energy transfer between a p-polarized guided mode propagating in a waveguide layer of the structure and copropagating SPP supported by a metal layer separated from the waveguide layer by a buffer. The high-efficiency energy transfer is realized by means of a properly designed LPG imprinted in the waveguide and buffer layers. This device is compact and free from any moving parts and can be easily integrated into any planar scheme. Our simulations are based on the coupled-mode theory and done at the well-developed and commercialized telecom wavelengths in the 1500nm window.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription