Abstract

We study the structure of l=1 modes of strongly anisotropic coiled weakly guiding optical fibers. By solving the vector wave equation within the framework of the perturbation theory with degeneracy, we analytically establish the expressions for modes and their polarization corrections. We show that, at certain parameters of the fiber helix, the l=1 modes are represented by almost pure optical vortices that maintain a linear polarization in the Frenet frame. We demonstrate that, in this case, the propagation constants comprise geometrically induced terms that are proportional to the orbital angular momentum (OAM) of the mode. We show that the vortex modes acquire upon propagation additional topological phases proportional to their intrinsic OAM and to the solid angle subtended by one helix coil. The presence of such a topological phase results in rotation (at a constant polarization) of the intensity patterns; after one coil the rotation angle equals the solid angle subtended by a coil.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (51)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription