Abstract

A hybrid guiding liquid-crystal photonic crystal fiber is proposed, in which two polarization components (Ex and Ey) are confined by modified total internal reflection and bandgap guidance, respectively. With the aid of scalar wave approximation, the distinct features in band structures of liquid-crystal photonic bandgap fibers are successfully identified. This hybrid guiding feature makes it possible to achieve single-polarization single-mode guiding and high birefringence guiding effects in different wavelength ranges. Particularly, high birefringence of an order of 102 can be easily obtained.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  2. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  3. T. A. Birks, J. C. Knight, and P. S. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  4. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002).
    [CrossRef]
  5. Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh, and D. J. Richardson, "Raman effects in a highly nonlinear holey fiber: amplification and modulation," Opt. Lett. 27, 424-426 (2002).
    [CrossRef]
  6. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference, Technical Digest (IEEE, 2002), pp. 466-468.
  7. J. Lægsgaard and T. T. Alkeskjold, "Designing a photonic bandgap fiber for thermo-optic switching," J. Opt. Soc. Am. B 23, 951-957 (2006).
    [CrossRef]
  8. T. T. Alkeskojld, L. A. Bjarklev, D. S. Hermann, Anawati, J. Broeng, J. Li, and S. T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004).
    [CrossRef]
  9. M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
    [CrossRef]
  10. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, "Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance," Opt. Express 14, 914-925 (2006).
    [CrossRef] [PubMed]
  11. R. Kotynski, M. Antkowiak, H. Thienpont, and K. Panajotov, "Modeling of polarization behaviour of LC filled photonic crystal fibers," in Proceedings of the IEEE/LEOS Symposium (IEEE, 2004), Benelux Chapter, pp. 315-319.
  12. B. Bahadur, Liquid Crystals: Applications and Uses (World Scientific, 1990), Vol. 1.
    [CrossRef]
  13. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, "Nonsilica glasses for holey fibers," J. Lightwave Technol. 23, 2046-2054 (2005).
    [CrossRef]
  14. C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, "A full-vectorial beam propagation method for anisotropic waveguides," J. Lightwave Technol. 12, 1926-1931 (1994).
    [CrossRef]
  15. S. John and K. Busch, "Photonic bandgap formation and tunability in certain self-organizing systems," J. Lightwave Technol. 17, 1931-1943 (1999).
    [CrossRef]
  16. G. Alagappan, X. W. Sun, P. Shum, M. B. Yu, and D. den Engelsen, "Symmetry properties of two-dimensional anisotropic photonic crystals," J. Opt. Soc. Am. A 23, 2002-2013 (2006).
    [CrossRef]
  17. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002).
    [CrossRef]
  18. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  19. J. Sun, C. C. Chan, and N. Ni, "Analysis of photonic crystal fibers infiltrated with nematic liquid crystal," Opt. Commun. 278, 66-70 (2007).
    [CrossRef]

2007 (1)

J. Sun, C. C. Chan, and N. Ni, "Analysis of photonic crystal fibers infiltrated with nematic liquid crystal," Opt. Commun. 278, 66-70 (2007).
[CrossRef]

2006 (3)

2005 (2)

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, "Nonsilica glasses for holey fibers," J. Lightwave Technol. 23, 2046-2054 (2005).
[CrossRef]

M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

2004 (1)

2003 (1)

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

2002 (3)

1999 (1)

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

1997 (1)

1994 (1)

C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, "A full-vectorial beam propagation method for anisotropic waveguides," J. Lightwave Technol. 12, 1926-1931 (1994).
[CrossRef]

Abeeluck, A. K.

Alagappan, G.

Alkeskjold, T. T.

Alkeskojld, T. T.

Anawati,

Antkowiak, M.

R. Kotynski, M. Antkowiak, H. Thienpont, and K. Panajotov, "Modeling of polarization behaviour of LC filled photonic crystal fibers," in Proceedings of the IEEE/LEOS Symposium (IEEE, 2004), Benelux Chapter, pp. 315-319.

Bahadur, B.

B. Bahadur, Liquid Crystals: Applications and Uses (World Scientific, 1990), Vol. 1.
[CrossRef]

Belardi, W.

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. S. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Bise, R. T.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference, Technical Digest (IEEE, 2002), pp. 466-468.

Bjarklev, A.

M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Bjarklev, L. A.

Broeng, J.

Busch, K.

Chan, C. C.

J. Sun, C. C. Chan, and N. Ni, "Analysis of photonic crystal fibers infiltrated with nematic liquid crystal," Opt. Commun. 278, 66-70 (2007).
[CrossRef]

Chaudhuri, S. K.

C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, "A full-vectorial beam propagation method for anisotropic waveguides," J. Lightwave Technol. 12, 1926-1931 (1994).
[CrossRef]

Chrostowski, J.

C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, "A full-vectorial beam propagation method for anisotropic waveguides," J. Lightwave Technol. 12, 1926-1931 (1994).
[CrossRef]

den Engelsen, D.

Eggleton, B. J.

Engan, H. E.

M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Feng, X.

Haakestad, M. W.

M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Hale, A.

Headley, C.

Hermann, D. S.

Hewak, D. W.

Huang, W. P.

C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, "A full-vectorial beam propagation method for anisotropic waveguides," J. Lightwave Technol. 12, 1926-1931 (1994).
[CrossRef]

John, S.

Kerbage, C.

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002).
[CrossRef]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference, Technical Digest (IEEE, 2002), pp. 466-468.

Knight, J. C.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. S. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Kotynski, R.

R. Kotynski, M. Antkowiak, H. Thienpont, and K. Panajotov, "Modeling of polarization behaviour of LC filled photonic crystal fibers," in Proceedings of the IEEE/LEOS Symposium (IEEE, 2004), Benelux Chapter, pp. 315-319.

Kranz, K. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference, Technical Digest (IEEE, 2002), pp. 466-468.

Kriezis, E. E.

Lægsgaard, J.

Larsen, T. T.

M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Lee, J. H.

Li, J.

Litchinitser, N. M.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Mairaj, A. K.

Monro, T. M.

Ni, N.

J. Sun, C. C. Chan, and N. Ni, "Analysis of photonic crystal fibers infiltrated with nematic liquid crystal," Opt. Commun. 278, 66-70 (2007).
[CrossRef]

Nielsen, M. D.

M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

Panajotov, K.

R. Kotynski, M. Antkowiak, H. Thienpont, and K. Panajotov, "Modeling of polarization behaviour of LC filled photonic crystal fibers," in Proceedings of the IEEE/LEOS Symposium (IEEE, 2004), Benelux Chapter, pp. 315-319.

Reyes, P.

Richardson, D. J.

Russell, P. S.

Russell, P. St. J.

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Shum, P.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Steinvurzel, P.

Sun, J.

J. Sun, C. C. Chan, and N. Ni, "Analysis of photonic crystal fibers infiltrated with nematic liquid crystal," Opt. Commun. 278, 66-70 (2007).
[CrossRef]

Sun, X. W.

Teh, P. C.

Thienpont, H.

R. Kotynski, M. Antkowiak, H. Thienpont, and K. Panajotov, "Modeling of polarization behaviour of LC filled photonic crystal fibers," in Proceedings of the IEEE/LEOS Symposium (IEEE, 2004), Benelux Chapter, pp. 315-319.

Trevor, D. J.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference, Technical Digest (IEEE, 2002), pp. 466-468.

Tsiboukis, T. D.

Westbrook, P. S.

Windeler, R. S.

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002).
[CrossRef]

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference, Technical Digest (IEEE, 2002), pp. 466-468.

Wu, S. T.

Xu, C. L.

C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, "A full-vectorial beam propagation method for anisotropic waveguides," J. Lightwave Technol. 12, 1926-1931 (1994).
[CrossRef]

Yu, M. B.

Yusoff, Z.

Zografopoulos, D. C.

IEEE Photon. Technol. Lett. (1)

M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. Sun, C. C. Chan, and N. Ni, "Analysis of photonic crystal fibers infiltrated with nematic liquid crystal," Opt. Commun. 278, 66-70 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Science (2)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (4)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference, Technical Digest (IEEE, 2002), pp. 466-468.

R. Kotynski, M. Antkowiak, H. Thienpont, and K. Panajotov, "Modeling of polarization behaviour of LC filled photonic crystal fibers," in Proceedings of the IEEE/LEOS Symposium (IEEE, 2004), Benelux Chapter, pp. 315-319.

B. Bahadur, Liquid Crystals: Applications and Uses (World Scientific, 1990), Vol. 1.
[CrossRef]

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the LCPCF with an optic axis of an NLC along the y direction.

Fig. 2
Fig. 2

Gap map of the PC cladding with optic axis of NLC inclusions along the y direction; inset figure: IBZ.

Fig. 3
Fig. 3

Gap maps of E x and E y , which correspond to the band structure of the PCs with ε a = diag ( n o 2 , n o 2 , n o 2 ) and ε a = diag ( n e 2 , n e 2 , n o 2 ) , respectively.

Fig. 4
Fig. 4

Transmission spectra for x and y polarizations.

Fig. 5
Fig. 5

Dispersion curves of guided modes as functions of the wavelength for x and y polarizations.

Fig. 6
Fig. 6

Mode intensity of x-polarized fundamental modes at the wavelength of (a) 780 nm , (b) 988 nm , and (c) 1550 nm , and of y-polarized fundamental modes at the wavelength of (d) 780 nm , (e) 988 nm , and (f) 1550 nm .

Fig. 7
Fig. 7

Modal birefringence as a function of the wavelength. Shaded region represents the wavelength range outside the bandgaps of E y . Inset, difference of the confinement losses of E x and E y within the wavelength range of 0.8 to 1.2 μ m .

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ε ( x , y ) = ( n x x 2 ( x , y ) 0 0 0 n y y 2 ( x , y ) 0 0 0 n z z 2 ( x , y ) ) .
× E = j ω μ 0 H ,
× H = j ω ε 0 ε E .
2 E x y 2 + x [ 1 n z z 2 x ( n x x 2 E x ) ] + ( n x x 2 k 0 2 β 2 ) E x = 2 E y x y x [ 1 n z z 2 y ( n y y 2 E y ) ] ,
2 E y x 2 + y [ 1 n z z 2 y ( n y y 2 E y ) ] + ( n y y 2 k 0 2 β 2 ) E y = 2 E x x y y [ 1 n z z 2 x ( n x x 2 E x ) ] ,
2 E x y 2 + n x x 2 n z z 2 2 E x x 2 + ( n x x 2 k 0 2 β 2 ) E x = 0 ,
2 E y x 2 + n y y 2 n z z 2 2 E y y 2 + ( n y y 2 k 0 2 β 2 ) E y = 0 .
2 E x y 2 + n x x 2 n z z 2 2 E x x 2 + ( n x x 2 k 0 2 β 2 ) E x = 0 ,
2 E y x 2 + n x x 2 n z z 2 2 E y y 2 + ( n x x 2 k 0 2 β 2 ) E y = 0 .
2 E x y 2 + 2 E x x 2 + ( n x x 2 k 0 2 β 2 ) E x = 0 ,
2 E y x 2 + n y y 2 n z z 2 2 E y y 2 + ( n y y 2 k 0 2 β 2 ) E y = 0 .
λ m = ( 2 d n e 2 n b 2 ) ( m + 0.5 ) ,
λ m = ( n o n e ) ( 2 d n e 2 n b 2 ) ( m + 0.5 ) m , m = 1 , 2 , 3 , ,

Metrics