Abstract

We demonstrate the broadband optical amplification in bismuth-doped strontium germanate glass with 808nm and 980nm laser diodes (LDs) as excitation sources. The net optical gain has been obtained within the wavelength region of 1272 to 1348nm with 808nm laser diode under 0.97W power. The maximum gain and gain coefficients are 1.23 and 1.03cm1 at 1315nm, respectively. The signal increment at 1300nm is 2.8 times with 980nm LD, under 3W power. The differential thermal analysis measurement reveals the good thermal stability of the studied glass. This glass could be suggested as a promising gain medium for broadband optical amplifiers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yamada, H. Ono, and Y. Ohishi, "Low-noise, broadband Er3+-doped silica fibre amplifiers," Electron. Lett. 34, 1490-1491 (1998).
    [CrossRef]
  2. M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76nm," IEEE Photonics Technol. Lett. 10, 1244-1246 (1998).
    [CrossRef]
  3. Y. Miyajima, T. Sugawa, and Y. Fukasaku, "38.2dB amplification at 1.31μm and possibility of 0.98μm pumping in Pr-doped fluoride fibre," Electron. Lett. 27, 1706-1707 (1991).
    [CrossRef]
  4. T. J. Whiteley, "A review of recent system demonstrations incorporating 1.3−μm praseodymium-doped fluoride fiber amplifiers," J. Lightwave Technol. 13, 744-760 (1995).
    [CrossRef]
  5. Y. Fujimoto and M. Nakatsuka, "Infrared luminescence from bismuth-doped silica glasses," Jpn. J. Appl. Phys. 40, L279-L281 (2001).
    [CrossRef]
  6. Y.-S. Seo, Y. Fujimoto, and M. Nakatsuka, "Simultaneous amplification at two wavelengths near 1300nm in a 6.5-cm-long bismuth-doped silica glass," IEEE Photonics Technol. Lett. 18, 1091-1093 (2007).
  7. E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, "CW bismuth-doped fibre laser," Quantum Electron. 35, 1083-1084 (2005).
    [CrossRef]
  8. V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, "Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres," in Proceedings of the 31st European Conference on Optical Communication (IEEE, 2005), Vol. 4, pp. 949-950.
  9. M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, "Bismuth and aluminum co-doped germanium oxide glasses for super-broadband optical amplification," Opt. Lett. 29, 1998-2000 (2004).
    [CrossRef] [PubMed]
  10. X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, "Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses," Opt. Express 13, 1635-1642 (2005).
    [CrossRef] [PubMed]
  11. J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, "Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses," Solid State Nucl. Magn. Reson. 140, 38-41 (2006).
  12. J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, "Infrared luminescence properties of bismuth-doped barium silicate glasses," J. Mater. Res. 22, 1954-1958 (2007).
    [CrossRef]
  13. J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, "Ultrabroad infrared luminescence from bismuth-doped aluminogermanate glasses," Solid State Nucl. Magn. Reson. 141, 59-562 (2007).
  14. T. Suzuki and Y. Ohishi, "Ultrabroadband near-infrared emission from Bi-doped Li2OAl2O3-SiO2 glass," Appl. Phys. Lett. 88, 191912-191914 (2006).
    [CrossRef]
  15. R. Sen, R. Caspary, and W. Kowalsky, "Optimisation of melting and casting conditions for Zr-fluoride based glasses," Opt. Mater. 29, 1035-1040 (2007).
    [CrossRef]
  16. Y.-S. Sen, Y. Fujimoto, and M. Nakatsuka, "Optical amplification in a bismuth-doped silica glass at 1300nm telecommunication window," Opt. Commun. 266, 169-171 (2006).
    [CrossRef]
  17. Y. Fujimoto, Y. Hirata, Y. Kuwada, T. Sato, and M. Nakatsuka, "Effect of GeO2 additive on fluorescence intensity enhancement in bismuth-doped silica glass," J. Mater. Res. 22, 565-568 (2007).
    [CrossRef]

2007 (5)

Y.-S. Seo, Y. Fujimoto, and M. Nakatsuka, "Simultaneous amplification at two wavelengths near 1300nm in a 6.5-cm-long bismuth-doped silica glass," IEEE Photonics Technol. Lett. 18, 1091-1093 (2007).

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, "Infrared luminescence properties of bismuth-doped barium silicate glasses," J. Mater. Res. 22, 1954-1958 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, "Ultrabroad infrared luminescence from bismuth-doped aluminogermanate glasses," Solid State Nucl. Magn. Reson. 141, 59-562 (2007).

R. Sen, R. Caspary, and W. Kowalsky, "Optimisation of melting and casting conditions for Zr-fluoride based glasses," Opt. Mater. 29, 1035-1040 (2007).
[CrossRef]

Y. Fujimoto, Y. Hirata, Y. Kuwada, T. Sato, and M. Nakatsuka, "Effect of GeO2 additive on fluorescence intensity enhancement in bismuth-doped silica glass," J. Mater. Res. 22, 565-568 (2007).
[CrossRef]

2006 (3)

Y.-S. Sen, Y. Fujimoto, and M. Nakatsuka, "Optical amplification in a bismuth-doped silica glass at 1300nm telecommunication window," Opt. Commun. 266, 169-171 (2006).
[CrossRef]

T. Suzuki and Y. Ohishi, "Ultrabroadband near-infrared emission from Bi-doped Li2OAl2O3-SiO2 glass," Appl. Phys. Lett. 88, 191912-191914 (2006).
[CrossRef]

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, "Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses," Solid State Nucl. Magn. Reson. 140, 38-41 (2006).

2005 (2)

X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, "Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses," Opt. Express 13, 1635-1642 (2005).
[CrossRef] [PubMed]

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, "CW bismuth-doped fibre laser," Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

2004 (1)

2001 (1)

Y. Fujimoto and M. Nakatsuka, "Infrared luminescence from bismuth-doped silica glasses," Jpn. J. Appl. Phys. 40, L279-L281 (2001).
[CrossRef]

1998 (2)

M. Yamada, H. Ono, and Y. Ohishi, "Low-noise, broadband Er3+-doped silica fibre amplifiers," Electron. Lett. 34, 1490-1491 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76nm," IEEE Photonics Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

1995 (1)

T. J. Whiteley, "A review of recent system demonstrations incorporating 1.3−μm praseodymium-doped fluoride fiber amplifiers," J. Lightwave Technol. 13, 744-760 (1995).
[CrossRef]

1991 (1)

Y. Miyajima, T. Sugawa, and Y. Fukasaku, "38.2dB amplification at 1.31μm and possibility of 0.98μm pumping in Pr-doped fluoride fibre," Electron. Lett. 27, 1706-1707 (1991).
[CrossRef]

Caspary, R.

R. Sen, R. Caspary, and W. Kowalsky, "Optimisation of melting and casting conditions for Zr-fluoride based glasses," Opt. Mater. 29, 1035-1040 (2007).
[CrossRef]

Chen, D.

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, "Infrared luminescence properties of bismuth-doped barium silicate glasses," J. Mater. Res. 22, 1954-1958 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, "Ultrabroad infrared luminescence from bismuth-doped aluminogermanate glasses," Solid State Nucl. Magn. Reson. 141, 59-562 (2007).

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, "Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses," Solid State Nucl. Magn. Reson. 140, 38-41 (2006).

X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, "Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses," Opt. Express 13, 1635-1642 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, "Bismuth and aluminum co-doped germanium oxide glasses for super-broadband optical amplification," Opt. Lett. 29, 1998-2000 (2004).
[CrossRef] [PubMed]

Dianov, E. M.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, "CW bismuth-doped fibre laser," Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, "Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres," in Proceedings of the 31st European Conference on Optical Communication (IEEE, 2005), Vol. 4, pp. 949-950.

Dvoyrin, V. V.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, "CW bismuth-doped fibre laser," Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, "Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres," in Proceedings of the 31st European Conference on Optical Communication (IEEE, 2005), Vol. 4, pp. 949-950.

Fujimoto, Y.

Y.-S. Seo, Y. Fujimoto, and M. Nakatsuka, "Simultaneous amplification at two wavelengths near 1300nm in a 6.5-cm-long bismuth-doped silica glass," IEEE Photonics Technol. Lett. 18, 1091-1093 (2007).

Y. Fujimoto, Y. Hirata, Y. Kuwada, T. Sato, and M. Nakatsuka, "Effect of GeO2 additive on fluorescence intensity enhancement in bismuth-doped silica glass," J. Mater. Res. 22, 565-568 (2007).
[CrossRef]

Y.-S. Sen, Y. Fujimoto, and M. Nakatsuka, "Optical amplification in a bismuth-doped silica glass at 1300nm telecommunication window," Opt. Commun. 266, 169-171 (2006).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, "Infrared luminescence from bismuth-doped silica glasses," Jpn. J. Appl. Phys. 40, L279-L281 (2001).
[CrossRef]

Fukasaku, Y.

Y. Miyajima, T. Sugawa, and Y. Fukasaku, "38.2dB amplification at 1.31μm and possibility of 0.98μm pumping in Pr-doped fluoride fibre," Electron. Lett. 27, 1706-1707 (1991).
[CrossRef]

Guryanov, A. N.

V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, "Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres," in Proceedings of the 31st European Conference on Optical Communication (IEEE, 2005), Vol. 4, pp. 949-950.

Gur'yanov, A. N.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, "CW bismuth-doped fibre laser," Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

Hirata, Y.

Y. Fujimoto, Y. Hirata, Y. Kuwada, T. Sato, and M. Nakatsuka, "Effect of GeO2 additive on fluorescence intensity enhancement in bismuth-doped silica glass," J. Mater. Res. 22, 565-568 (2007).
[CrossRef]

Hu, X.

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, "Ultrabroad infrared luminescence from bismuth-doped aluminogermanate glasses," Solid State Nucl. Magn. Reson. 141, 59-562 (2007).

Jiang, X.

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, "Ultrabroad infrared luminescence from bismuth-doped aluminogermanate glasses," Solid State Nucl. Magn. Reson. 141, 59-562 (2007).

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, "Infrared luminescence properties of bismuth-doped barium silicate glasses," J. Mater. Res. 22, 1954-1958 (2007).
[CrossRef]

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, "Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses," Solid State Nucl. Magn. Reson. 140, 38-41 (2006).

X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, "Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses," Opt. Express 13, 1635-1642 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, "Bismuth and aluminum co-doped germanium oxide glasses for super-broadband optical amplification," Opt. Lett. 29, 1998-2000 (2004).
[CrossRef] [PubMed]

Kanamori, T.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76nm," IEEE Photonics Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Kobayashi, K.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76nm," IEEE Photonics Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Kowalsky, W.

R. Sen, R. Caspary, and W. Kowalsky, "Optimisation of melting and casting conditions for Zr-fluoride based glasses," Opt. Mater. 29, 1035-1040 (2007).
[CrossRef]

Kuwada, Y.

Y. Fujimoto, Y. Hirata, Y. Kuwada, T. Sato, and M. Nakatsuka, "Effect of GeO2 additive on fluorescence intensity enhancement in bismuth-doped silica glass," J. Mater. Res. 22, 565-568 (2007).
[CrossRef]

Mashinsky, V. M.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, "CW bismuth-doped fibre laser," Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, "Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres," in Proceedings of the 31st European Conference on Optical Communication (IEEE, 2005), Vol. 4, pp. 949-950.

Meng, X.

Miyajima, Y.

Y. Miyajima, T. Sugawa, and Y. Fukasaku, "38.2dB amplification at 1.31μm and possibility of 0.98μm pumping in Pr-doped fluoride fibre," Electron. Lett. 27, 1706-1707 (1991).
[CrossRef]

Mori, A.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76nm," IEEE Photonics Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Nakatsuka, M.

Y.-S. Seo, Y. Fujimoto, and M. Nakatsuka, "Simultaneous amplification at two wavelengths near 1300nm in a 6.5-cm-long bismuth-doped silica glass," IEEE Photonics Technol. Lett. 18, 1091-1093 (2007).

Y. Fujimoto, Y. Hirata, Y. Kuwada, T. Sato, and M. Nakatsuka, "Effect of GeO2 additive on fluorescence intensity enhancement in bismuth-doped silica glass," J. Mater. Res. 22, 565-568 (2007).
[CrossRef]

Y.-S. Sen, Y. Fujimoto, and M. Nakatsuka, "Optical amplification in a bismuth-doped silica glass at 1300nm telecommunication window," Opt. Commun. 266, 169-171 (2006).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, "Infrared luminescence from bismuth-doped silica glasses," Jpn. J. Appl. Phys. 40, L279-L281 (2001).
[CrossRef]

Nishida, Y.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76nm," IEEE Photonics Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Ohishi, Y.

T. Suzuki and Y. Ohishi, "Ultrabroadband near-infrared emission from Bi-doped Li2OAl2O3-SiO2 glass," Appl. Phys. Lett. 88, 191912-191914 (2006).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76nm," IEEE Photonics Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

M. Yamada, H. Ono, and Y. Ohishi, "Low-noise, broadband Er3+-doped silica fibre amplifiers," Electron. Lett. 34, 1490-1491 (1998).
[CrossRef]

Oikawa, K.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76nm," IEEE Photonics Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Ono, H.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76nm," IEEE Photonics Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

M. Yamada, H. Ono, and Y. Ohishi, "Low-noise, broadband Er3+-doped silica fibre amplifiers," Electron. Lett. 34, 1490-1491 (1998).
[CrossRef]

Peng, M.

Qiu, J.

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, "Infrared luminescence properties of bismuth-doped barium silicate glasses," J. Mater. Res. 22, 1954-1958 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, "Ultrabroad infrared luminescence from bismuth-doped aluminogermanate glasses," Solid State Nucl. Magn. Reson. 141, 59-562 (2007).

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, "Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses," Solid State Nucl. Magn. Reson. 140, 38-41 (2006).

X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, "Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses," Opt. Express 13, 1635-1642 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, "Bismuth and aluminum co-doped germanium oxide glasses for super-broadband optical amplification," Opt. Lett. 29, 1998-2000 (2004).
[CrossRef] [PubMed]

Ren, J.

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, "Infrared luminescence properties of bismuth-doped barium silicate glasses," J. Mater. Res. 22, 1954-1958 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, "Ultrabroad infrared luminescence from bismuth-doped aluminogermanate glasses," Solid State Nucl. Magn. Reson. 141, 59-562 (2007).

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, "Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses," Solid State Nucl. Magn. Reson. 140, 38-41 (2006).

Sato, T.

Y. Fujimoto, Y. Hirata, Y. Kuwada, T. Sato, and M. Nakatsuka, "Effect of GeO2 additive on fluorescence intensity enhancement in bismuth-doped silica glass," J. Mater. Res. 22, 565-568 (2007).
[CrossRef]

Sen, R.

R. Sen, R. Caspary, and W. Kowalsky, "Optimisation of melting and casting conditions for Zr-fluoride based glasses," Opt. Mater. 29, 1035-1040 (2007).
[CrossRef]

Sen, Y.-S

Y.-S. Sen, Y. Fujimoto, and M. Nakatsuka, "Optical amplification in a bismuth-doped silica glass at 1300nm telecommunication window," Opt. Commun. 266, 169-171 (2006).
[CrossRef]

Seo, Y.-S.

Y.-S. Seo, Y. Fujimoto, and M. Nakatsuka, "Simultaneous amplification at two wavelengths near 1300nm in a 6.5-cm-long bismuth-doped silica glass," IEEE Photonics Technol. Lett. 18, 1091-1093 (2007).

Sugawa, T.

Y. Miyajima, T. Sugawa, and Y. Fukasaku, "38.2dB amplification at 1.31μm and possibility of 0.98μm pumping in Pr-doped fluoride fibre," Electron. Lett. 27, 1706-1707 (1991).
[CrossRef]

Suzuki, T.

T. Suzuki and Y. Ohishi, "Ultrabroadband near-infrared emission from Bi-doped Li2OAl2O3-SiO2 glass," Appl. Phys. Lett. 88, 191912-191914 (2006).
[CrossRef]

Umnikov, A. A.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, "CW bismuth-doped fibre laser," Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, "Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres," in Proceedings of the 31st European Conference on Optical Communication (IEEE, 2005), Vol. 4, pp. 949-950.

Wang, C.

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, "Infrared luminescence properties of bismuth-doped barium silicate glasses," J. Mater. Res. 22, 1954-1958 (2007).
[CrossRef]

Whiteley, T. J.

T. J. Whiteley, "A review of recent system demonstrations incorporating 1.3−μm praseodymium-doped fluoride fiber amplifiers," J. Lightwave Technol. 13, 744-760 (1995).
[CrossRef]

Yamada, M.

M. Yamada, H. Ono, and Y. Ohishi, "Low-noise, broadband Er3+-doped silica fibre amplifiers," Electron. Lett. 34, 1490-1491 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76nm," IEEE Photonics Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Yang, L.

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, "Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses," Solid State Nucl. Magn. Reson. 140, 38-41 (2006).

M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, "Bismuth and aluminum co-doped germanium oxide glasses for super-broadband optical amplification," Opt. Lett. 29, 1998-2000 (2004).
[CrossRef] [PubMed]

Yashkov, M. V.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, "CW bismuth-doped fibre laser," Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, "Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres," in Proceedings of the 31st European Conference on Optical Communication (IEEE, 2005), Vol. 4, pp. 949-950.

Zhao, Q.

Zhu, C.

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, "Infrared luminescence properties of bismuth-doped barium silicate glasses," J. Mater. Res. 22, 1954-1958 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, "Ultrabroad infrared luminescence from bismuth-doped aluminogermanate glasses," Solid State Nucl. Magn. Reson. 141, 59-562 (2007).

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, "Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses," Solid State Nucl. Magn. Reson. 140, 38-41 (2006).

X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, "Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses," Opt. Express 13, 1635-1642 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, L. Yang, X. Jiang, and C. Zhu, "Bismuth and aluminum co-doped germanium oxide glasses for super-broadband optical amplification," Opt. Lett. 29, 1998-2000 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

T. Suzuki and Y. Ohishi, "Ultrabroadband near-infrared emission from Bi-doped Li2OAl2O3-SiO2 glass," Appl. Phys. Lett. 88, 191912-191914 (2006).
[CrossRef]

Electron. Lett. (2)

M. Yamada, H. Ono, and Y. Ohishi, "Low-noise, broadband Er3+-doped silica fibre amplifiers," Electron. Lett. 34, 1490-1491 (1998).
[CrossRef]

Y. Miyajima, T. Sugawa, and Y. Fukasaku, "38.2dB amplification at 1.31μm and possibility of 0.98μm pumping in Pr-doped fluoride fibre," Electron. Lett. 27, 1706-1707 (1991).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76nm," IEEE Photonics Technol. Lett. 10, 1244-1246 (1998).
[CrossRef]

Y.-S. Seo, Y. Fujimoto, and M. Nakatsuka, "Simultaneous amplification at two wavelengths near 1300nm in a 6.5-cm-long bismuth-doped silica glass," IEEE Photonics Technol. Lett. 18, 1091-1093 (2007).

J. Lightwave Technol. (1)

T. J. Whiteley, "A review of recent system demonstrations incorporating 1.3−μm praseodymium-doped fluoride fiber amplifiers," J. Lightwave Technol. 13, 744-760 (1995).
[CrossRef]

J. Mater. Res. (2)

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, "Infrared luminescence properties of bismuth-doped barium silicate glasses," J. Mater. Res. 22, 1954-1958 (2007).
[CrossRef]

Y. Fujimoto, Y. Hirata, Y. Kuwada, T. Sato, and M. Nakatsuka, "Effect of GeO2 additive on fluorescence intensity enhancement in bismuth-doped silica glass," J. Mater. Res. 22, 565-568 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Fujimoto and M. Nakatsuka, "Infrared luminescence from bismuth-doped silica glasses," Jpn. J. Appl. Phys. 40, L279-L281 (2001).
[CrossRef]

Opt. Commun. (1)

Y.-S. Sen, Y. Fujimoto, and M. Nakatsuka, "Optical amplification in a bismuth-doped silica glass at 1300nm telecommunication window," Opt. Commun. 266, 169-171 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

R. Sen, R. Caspary, and W. Kowalsky, "Optimisation of melting and casting conditions for Zr-fluoride based glasses," Opt. Mater. 29, 1035-1040 (2007).
[CrossRef]

Quantum Electron. (1)

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, "CW bismuth-doped fibre laser," Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

Solid State Nucl. Magn. Reson. (2)

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, "Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses," Solid State Nucl. Magn. Reson. 140, 38-41 (2006).

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, "Ultrabroad infrared luminescence from bismuth-doped aluminogermanate glasses," Solid State Nucl. Magn. Reson. 141, 59-562 (2007).

Other (1)

V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, "Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres," in Proceedings of the 31st European Conference on Optical Communication (IEEE, 2005), Vol. 4, pp. 949-950.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

DTA profile of the glass.

Fig. 2
Fig. 2

Transmittance spectra of glass sample. The wavelength region between 500 and 1000 nm appears in the inset.

Fig. 3
Fig. 3

Decay curves of emissions at 1290 and 1476 nm from glass excited at 808 and 980 nm , respectively.

Fig. 4
Fig. 4

Experimental configuration a, 808 nm laser diode as excitation source; b, 1311 nm tunable laser diode as probe beam; c, chopper; d, lens with 500 mm focal length; e, glass; f, filter; g, InGaAs detector; Ml, M2, and M3 are mirrors.

Fig. 5
Fig. 5

Luminescence spectrum and net optical gain spectrum of glass sample, excited with a diode laser at 808 nm . The excitation powers are 0.145 and 0.97 W , respectively.

Fig. 6
Fig. 6

Dependence of optical gain at 1315 nm on excitation power. The abscissa denotes the incident power of pumping light.

Fig. 7
Fig. 7

Luminescence spectrum and probe-beam signal amplification at 1300 nm , excited with a diode laser at 980 nm . Curves 1 and 2 represent the detected signal with and without excitation state. The excitation power is 3 W .

Tables (1)

Tables Icon

Table 1 Optical Gain and Gain Coefficients in Different Bulk Glasses

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = ( n 1 n + 1 ) 2 ,
τ ¯ = I ( t ) t d t I ( t ) d t

Metrics