Abstract

Extraordinary transmission in subwavelength hole arrays has been interpreted by surface-plasmon models and diffraction-based models. To understand controversial mechanisms of transmission enhancement, we simulate hole arrays, using a rigorous Fourier-space scattering matrix simulation. At the enhanced transmission maximum there are large evanescent diffracted fields above the metal surface. These evanescent fields are decomposed into longitudinal and transverse components. Both components are comparable in magnitude. The longitudinal field is 15%–20% larger in the square lattice. Transverse fields are slightly larger in the triangular lattice. The longitudinal and transverse evanescent surface fields are related to bound surface modes of the hole array.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  2. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef] [PubMed]
  3. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
    [CrossRef]
  4. D. E. Grupp, H. J. Lezec, K. M. Pellerin, T. W. Ebbesen, and T. Thio, "Fundamental role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
    [CrossRef]
  5. K. L. Van der Molden, K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory," Phys. Rev. B 72, 045421 (2005).
    [CrossRef]
  6. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
    [CrossRef]
  7. H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005).
    [CrossRef] [PubMed]
  8. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
    [CrossRef]
  9. W. L. Barnes, W. A. Murray, J. Dintlinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  10. S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, "Simple layer-by-layer photonic crystal for the control of thermal emission," Appl. Phys. Lett. 86, 261101 (2005).
    [CrossRef]
  11. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  12. J. D. Kraus and K. R. Carver, Electromagnetics (McGraw-Hill, 1973).
  13. G. Kobidze, B. Shanker, and D. P. Nyquist, "Efficient integral-equation-based method for accurate analysis of scattering from periodically arranged nanostructures," Phys. Rev. E 72, 056702 (2005).
    [CrossRef]
  14. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  15. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef] [PubMed]
  16. S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A, Pure Appl. Opt. 4, S83-S87 (2002).
    [CrossRef]
  17. M. M. J. Treacy, "Dynamical diffraction in metallic optical gratings," Appl. Phys. Lett. 75, 606-608 (1999).
    [CrossRef]
  18. M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).
    [CrossRef]
  19. J. M. Vigoureux, "Analysis of the Ebbesen experiment in the light of evanescent short range diffraction," Opt. Commun. 198, 257-263 (2001).
    [CrossRef]
  20. H. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
    [CrossRef] [PubMed]
  21. J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
    [CrossRef] [PubMed]
  22. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
    [CrossRef]
  23. R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B 74, 045107 (2006).
    [CrossRef]
  24. M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
    [CrossRef]
  25. Z. Y. Li and L. L. Lin, "Photonic band structures solved by a plane-wave based transfer matrix method," Phys. Rev. E 67, 046607 (2003).
    [CrossRef]
  26. L. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024-1035 (1996).
    [CrossRef]
  27. E. Palik, Handbook of the Optical Constants of Solids II (Academic, 1991). The Drude dielectric function of gold was epsi1(ω)=1−ωp2/(ω2+ωr2); epsi2(ω)=ωp2ωr/(ω3+ωωr2).
  28. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1120 (1983).
    [CrossRef]
  29. I. El-Kady, M. M. Sigalas, R. Biswas, C. M. Soukoulis, and K. M. Ho, "Photonic band gaps in three-dimensional metallic lattices," Phys. Rev. B 62, 15299-15302 (2000).
    [CrossRef]
  30. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B 67, 085415 (2003).
    [CrossRef]
  31. F. J. Garcia Vidal, L. Martin-Moreno, and J. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A, Pure Appl. Opt. 7, S97-S101 (2005).
    [CrossRef]

2006 (1)

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B 74, 045107 (2006).
[CrossRef]

2005 (6)

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

F. J. Garcia Vidal, L. Martin-Moreno, and J. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A, Pure Appl. Opt. 7, S97-S101 (2005).
[CrossRef]

K. L. Van der Molden, K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005).
[CrossRef] [PubMed]

G. Kobidze, B. Shanker, and D. P. Nyquist, "Efficient integral-equation-based method for accurate analysis of scattering from periodically arranged nanostructures," Phys. Rev. E 72, 056702 (2005).
[CrossRef]

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, "Simple layer-by-layer photonic crystal for the control of thermal emission," Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

2004 (4)

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintlinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

H. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
[CrossRef] [PubMed]

J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

2003 (2)

Z. Y. Li and L. L. Lin, "Photonic band structures solved by a plane-wave based transfer matrix method," Phys. Rev. E 67, 046607 (2003).
[CrossRef]

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B 67, 085415 (2003).
[CrossRef]

2002 (4)

M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).
[CrossRef]

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A, Pure Appl. Opt. 4, S83-S87 (2002).
[CrossRef]

2001 (2)

J. M. Vigoureux, "Analysis of the Ebbesen experiment in the light of evanescent short range diffraction," Opt. Commun. 198, 257-263 (2001).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

2000 (2)

D. E. Grupp, H. J. Lezec, K. M. Pellerin, T. W. Ebbesen, and T. Thio, "Fundamental role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, C. M. Soukoulis, and K. M. Ho, "Photonic band gaps in three-dimensional metallic lattices," Phys. Rev. B 62, 15299-15302 (2000).
[CrossRef]

1999 (2)

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

1996 (1)

1983 (1)

1944 (1)

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Albrand, G.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, "Simple layer-by-layer photonic crystal for the control of thermal emission," Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

Alexander, R. W.

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintlinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bethe, H. A.

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Biswas, R.

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, C. M. Soukoulis, and K. M. Ho, "Photonic band gaps in three-dimensional metallic lattices," Phys. Rev. B 62, 15299-15302 (2000).
[CrossRef]

Bulu, I.

Caglayan, H.

Cao, Q.

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Carver, K. R.

J. D. Kraus and K. R. Carver, Electromagnetics (McGraw-Hill, 1973).

Choi, D. S.

M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Daly, J.

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Daly, J. T.

M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintlinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Ding, C. G.

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Dintlinger, J.

W. L. Barnes, W. A. Murray, J. Dintlinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintlinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, K. M. Pellerin, T. W. Ebbesen, and T. Thio, "Fundamental role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Elalmy, Z.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, "Simple layer-by-layer photonic crystal for the control of thermal emission," Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

El-Kady, I.

M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, C. M. Soukoulis, and K. M. Ho, "Photonic band gaps in three-dimensional metallic lattices," Phys. Rev. B 62, 15299-15302 (2000).
[CrossRef]

Enoch, S.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, "Simple layer-by-layer photonic crystal for the control of thermal emission," Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

K. L. Van der Molden, K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A, Pure Appl. Opt. 4, S83-S87 (2002).
[CrossRef]

Escoubas, L.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, "Simple layer-by-layer photonic crystal for the control of thermal emission," Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

Garcia Vidal, F. J.

F. J. Garcia Vidal, L. Martin-Moreno, and J. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A, Pure Appl. Opt. 7, S97-S101 (2005).
[CrossRef]

Garcia-Vidal, F. J.

J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

George, T.

M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Ghaemi, H. F.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Greenwald, A.

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Greenwald, A. C.

M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, K. M. Pellerin, T. W. Ebbesen, and T. Thio, "Fundamental role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Ho, K. M.

I. El-Kady, M. M. Sigalas, R. Biswas, C. M. Soukoulis, and K. M. Ho, "Photonic band gaps in three-dimensional metallic lattices," Phys. Rev. B 62, 15299-15302 (2000).
[CrossRef]

Hulst, N. F.

K. L. Van der Molden, K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

Johnson, E.

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

Johnson, E. A.

M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Kinkade, B.

M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Klein Koerkamp, K. J.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

Kobidze, G.

G. Kobidze, B. Shanker, and D. P. Nyquist, "Efficient integral-equation-based method for accurate analysis of scattering from periodically arranged nanostructures," Phys. Rev. E 72, 056702 (2005).
[CrossRef]

Koerkamp, K. J.

K. L. Van der Molden, K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

Kraus, J. D.

J. D. Kraus and K. R. Carver, Electromagnetics (McGraw-Hill, 1973).

Kuipers, L.

K. L. Van der Molden, K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

Lalanne, P.

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Lemarquis, F.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, "Simple layer-by-layer photonic crystal for the control of thermal emission," Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

Lezec, H.

Lezec, H. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, K. M. Pellerin, T. W. Ebbesen, and T. Thio, "Fundamental role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Li, L.

Li, Z. Y.

Z. Y. Li and L. L. Lin, "Photonic band structures solved by a plane-wave based transfer matrix method," Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Lin, L. L.

Z. Y. Li and L. L. Lin, "Photonic band structures solved by a plane-wave based transfer matrix method," Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Long, L. L.

Martin-Moreno, L.

F. J. Garcia Vidal, L. Martin-Moreno, and J. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A, Pure Appl. Opt. 7, S97-S101 (2005).
[CrossRef]

J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

McNeal, M.

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Moelders, N.

M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintlinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Neviere, M.

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A, Pure Appl. Opt. 4, S83-S87 (2002).
[CrossRef]

Nyquist, D. P.

G. Kobidze, B. Shanker, and D. P. Nyquist, "Efficient integral-equation-based method for accurate analysis of scattering from periodically arranged nanostructures," Phys. Rev. E 72, 056702 (2005).
[CrossRef]

Ordal, M. A.

Ozbay, E.

Palik, E.

E. Palik, Handbook of the Optical Constants of Solids II (Academic, 1991). The Drude dielectric function of gold was epsi1(ω)=1−ωp2/(ω2+ωr2); epsi2(ω)=ωp2ωr/(ω3+ωωr2).

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, K. M. Pellerin, T. W. Ebbesen, and T. Thio, "Fundamental role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

Pendry, J.

F. J. Garcia Vidal, L. Martin-Moreno, and J. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A, Pure Appl. Opt. 7, S97-S101 (2005).
[CrossRef]

J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Popov, E.

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A, Pure Appl. Opt. 4, S83-S87 (2002).
[CrossRef]

Pralle, M.

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Puscasu, I.

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Reinisch, R.

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A, Pure Appl. Opt. 4, S83-S87 (2002).
[CrossRef]

Sarrazin, M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Segerink, F. B.

K. L. Van der Molden, K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

Shanker, B.

G. Kobidze, B. Shanker, and D. P. Nyquist, "Efficient integral-equation-based method for accurate analysis of scattering from periodically arranged nanostructures," Phys. Rev. E 72, 056702 (2005).
[CrossRef]

Sigalas, M. M.

I. El-Kady, M. M. Sigalas, R. Biswas, C. M. Soukoulis, and K. M. Ho, "Photonic band gaps in three-dimensional metallic lattices," Phys. Rev. B 62, 15299-15302 (2000).
[CrossRef]

Simon, J.-J.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, "Simple layer-by-layer photonic crystal for the control of thermal emission," Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

Soukoulis, C. M.

I. El-Kady, M. M. Sigalas, R. Biswas, C. M. Soukoulis, and K. M. Ho, "Photonic band gaps in three-dimensional metallic lattices," Phys. Rev. B 62, 15299-15302 (2000).
[CrossRef]

Thio, T.

H. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, K. M. Pellerin, T. W. Ebbesen, and T. Thio, "Fundamental role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Torchio, P.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, "Simple layer-by-layer photonic crystal for the control of thermal emission," Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

Treacy, M. M. J.

M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).
[CrossRef]

M. M. J. Treacy, "Dynamical diffraction in metallic optical gratings," Appl. Phys. Lett. 75, 606-608 (1999).
[CrossRef]

Van der Molden, K. L.

K. L. Van der Molden, K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

van Hulst, N. F.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

Vigneron, J.-P.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Vigoureux, J. M.

J. M. Vigoureux, "Analysis of the Ebbesen experiment in the light of evanescent short range diffraction," Opt. Commun. 198, 257-263 (2001).
[CrossRef]

Vigoureux, J.-M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Ward, C. A.

Wolff, P. A.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

M. Pralle, E. A. Johnson, I. Puscasu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Tunable narrow band emitters in the infrared," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

D. E. Grupp, H. J. Lezec, K. M. Pellerin, T. W. Ebbesen, and T. Thio, "Fundamental role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, "Simple layer-by-layer photonic crystal for the control of thermal emission," Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

M. M. J. Treacy, "Dynamical diffraction in metallic optical gratings," Appl. Phys. Lett. 75, 606-608 (1999).
[CrossRef]

J. Appl. Phys. (1)

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531 (2005).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

F. J. Garcia Vidal, L. Martin-Moreno, and J. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A, Pure Appl. Opt. 7, S97-S101 (2005).
[CrossRef]

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A, Pure Appl. Opt. 4, S83-S87 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Commun. (1)

J. M. Vigoureux, "Analysis of the Ebbesen experiment in the light of evanescent short range diffraction," Opt. Commun. 198, 257-263 (2001).
[CrossRef]

Opt. Express (2)

Phys. Rev. (1)

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Phys. Rev. B (6)

M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

K. L. Van der Molden, K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory," Phys. Rev. B 72, 045421 (2005).
[CrossRef]

R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, "Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission," Phys. Rev. B 74, 045107 (2006).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, C. M. Soukoulis, and K. M. Ho, "Photonic band gaps in three-dimensional metallic lattices," Phys. Rev. B 62, 15299-15302 (2000).
[CrossRef]

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, "Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes," Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Phys. Rev. E (2)

Z. Y. Li and L. L. Lin, "Photonic band structures solved by a plane-wave based transfer matrix method," Phys. Rev. E 67, 046607 (2003).
[CrossRef]

G. Kobidze, B. Shanker, and D. P. Nyquist, "Efficient integral-equation-based method for accurate analysis of scattering from periodically arranged nanostructures," Phys. Rev. E 72, 056702 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintlinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Science (1)

J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Other (3)

E. Palik, Handbook of the Optical Constants of Solids II (Academic, 1991). The Drude dielectric function of gold was epsi1(ω)=1−ωp2/(ω2+ωr2); epsi2(ω)=ωp2ωr/(ω3+ωωr2).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

J. D. Kraus and K. R. Carver, Electromagnetics (McGraw-Hill, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Reflection (dashed curve) and transmission (solid curve) for a square lattice of holes in a gold film with radius r a = 0.20 , lattice constant a = 2 μ and thickness t = 0.15 μ . (b) Magnified scale showing the transmission peaks at shorter wavelengths. (c) Reflection and transmission for the gold film with radius r a = 0.25 and t = 0.15 μ . (d) Measured transmission for hole arrays in Ag films with a = 0.75 μ . Reprinted from [2] with permission.

Fig. 2
Fig. 2

Fourier transform of the dielectric function ε ( ω , G ) as a function of the magnitude of the reciprocal lattice vector G , for different circular aperture radii. The frequency ( ω 2 π ) is 75 THz .

Fig. 3
Fig. 3

Reflection and transmission for a square lattice of holes in a gold film with radius r a = 0.25 , and lattice constant a = 2 μ on a quartz substrate with n = 1.5 . A 20 μ thick quartz substrate was used.

Fig. 4
Fig. 4

(a) Magnitudes of the Fourier components C ( G ) of the evanescent reflected electric field just above the hole array, as a function of G . (b) Phase difference between the diffracted evanescent components and the incident electric fields as a function of G .

Fig. 5
Fig. 5

Magnitudes of the longitudinal (surface-plasmon-like) and transverse components of the diffracted evanescent electric field just above the hole array (for the square lattice a = 2 μ ), for the resonant wavelength of 2.1 μ and hole radius r a = 0.20 . The relation between the diffracted electric fields and the wave vector is shown in adjoining figures for longitudinal and transverse components.

Fig. 6
Fig. 6

Electric field intensities in the square hole array for the enhanced transmission peak at a wavelength λ a = 1.05 and a hole radius r a = 0.2 , with incident field polarized along the x axis.

Fig. 7
Fig. 7

(a) Reflection and transmission for a triangular lattice of holes in a free-standing gold film with hole radius r a = 0.20 and lattice constant a = 2 μ and film thickness of 0.05 μ . (b) Enlarged view of transmission and reflection. (c) Simulated reflection and transmission when the hole size is increased to r a = 0.25 , keeping all other parameters the same.

Fig. 8
Fig. 8

Evanescent transverse and longitudinal electric fields for the triangular lattice of holes with radius r a = 0.25 with a = 2 μ and t = 0.05 μ .

Tables (1)

Tables Icon

Table 1 Comparison of the Longitudinal (Surface Plasmon) and Transverse Diffracted Field

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

E k ( r ) = G E G ( z ) e i ( k + G ) x ,
ε ̃ ( ω , G ) = ( 1 ( 1 f ) ω p 2 ω 2 + ω τ 2 ) + i ω τ ω p 2 ω ( ω 2 + ω τ 2 ) ( G = 0 ) ,
ε ̃ ( ω , G ) = ( ω p 2 ω 2 + ω τ 2 i ω τ ω p 2 ω ( ω 2 + ω τ 2 ) ) f ω p 2 ω 2 2 J 1 ( GR ) GR ( G 0 ) .
E r ( r ) = G , G < ω c B ( G ) exp ( iG x ) exp ( iz [ ( w c ) 2 G 2 ] 1 2 ) + G , G > ω c C ( G ) exp ( iG x ) exp ( z [ G 2 ( w c ) 2 ] 1 2 ) ,
k z = ω 2 c 2 G 2 .
E e ( r ) = G C ( G ) x ̂ exp ( iG x x + iG y y ) .
E l ( G ) = C ( G ) G x G .
E t ( G ) = C ( G ) G y G .
k z ε 0 + q z ε e f f = 0 ,
q z = i ( π d ) 2 ( ω c ) 2 .
ε e f f = 1 ( π c a ω ) 2 .
λ n , m = a n 2 + m 2 .
γ = ( k n r r ) 2 ω 2 c 2 .
λ m , n = 2 π G m , n = a m 2 + ( 2 n m ) 2 3 .
× E = 1 c H t ; × H = ε ( r ) c E t ,
× E = i ω H ; × H = i ω ε ( r ) E .
z E x = 1 i ω c x [ 1 ε ( x H y y H x ) ] + i ( ω c ) H y ,
z E y = 1 i ω c y [ 1 ε ( y H x x H y ) ] + i ( ω c ) H x .
ε ( r ) = G ε ( G ) e iG r ,
E α ( r ) = i = 1 N G E G i , α ( z ) exp ( i ( k + G i ) x ) ,
z E G , x = i ( k + G ) x ω c G ε 1 ( G , G ) [ ( k + G ) x H G , y ( k + G ) H G , x ] i ( ω c ) H G , x .
z E = M 1 H ; z H = M 2 H ,
z 2 E = M 1 M 2 E .

Metrics