Abstract

A new method, to our knowledge, is proposed that enables single-shot measurements of the temporal coherence properties of pulsed laser sources. By modification of a Michelson interferometer, two replicas of the source are formed. Owing to the symmetry of the configuration, the optical path difference and, consequently, the visibility of the resulting interference fringes are varied over one dimension. This effectively replaces the mechanical scanning performed in a typical interferometer and thereby provides a direct measurement of the temporal coherence of a single pulse. Our method is successfully applied to the study of the single-shot temporal coherence of a Rhodamine 6G–ZnO–poly(methyl methacrylate) random laser system.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov, "Stimulated emission of an ensemble of scattering particles with negative absorption," JETP Lett. 5, 212-215 (1967).
  2. V. S. Letokhov, "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26, 835-840 (1968).
  3. R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, "A laser with a nonresonant feedback," IEEE J. Quantum Electron. 2, 442-446 (1966).
    [CrossRef]
  4. V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, "Luminescence and stimulated emission of neodymium in sodium-lanthanum molybdate powders," Sov. J. Quantum Electron. 16, 281-283 (1986).
    [CrossRef]
  5. H. Cao, "Lasing in random media," Waves Random Media 13, R1-R39 (2003).
    [CrossRef]
  6. M. A. Noginov, G. Zhu, A. A. Frantz, J. Novak, S. N. Williams, and I. Fowlkes, "Dependence of NdSc3(BO3)4 random laser parameters on particle size," J. Opt. Soc. Am. B 21, 191-200 (2004).
    [CrossRef]
  7. M. Bahoura, K. J. Morris, and M. A. Noginov, "Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size," Opt. Commun. 201, 405-411 (2002).
    [CrossRef]
  8. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
    [CrossRef]
  9. D. Wiersma, "The smallest random laser," Nature 406, 132-133 (2000).
    [CrossRef] [PubMed]
  10. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
    [CrossRef] [PubMed]
  11. A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, "Random lasing from surface modified films of zinc oxide nanoparticles," Appl. Surf. Sci. 247, 18-24 (2005).
    [CrossRef]
  12. S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, "Flexible ultraviolet random lasers based on nanoparticles," Small 1, 956-959 (2005).
    [CrossRef]
  13. D. Anglos, A. Stassinopoulos, R. N. Das, G. Zacharakis, M. Psyllaki, R. Jakubiak, R. A. Vaia, E. P. Giannelis, and S. H. Anastasiadis, "Random laser action in organic-inorganic nanocomposites," J. Opt. Soc. Am. B 21, 208-213 (2004).
    [CrossRef]
  14. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
    [CrossRef]
  15. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, "Amplified extended modes in random lasers," Phys. Rev. Lett. 93, 053903 (2004).
    [CrossRef] [PubMed]
  16. F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, and A. J. Heeger, "Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals," Chem. Phys. Lett. 256, 424-430 (1996).
    [CrossRef]
  17. G. Zacharakis, N. A. Papadogiannis, G. Filippidis, and T. G. Papazoglou, "Photon statistics of laserlike emission from polymeric scattering gain media," Opt. Lett. 25, 923-925 (2000).
    [CrossRef]
  18. H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, "Photon statistics of random lasers with resonant feedback," Phys. Rev. Lett. 86, 4524-4527 (2001).
    [CrossRef] [PubMed]
  19. R. C. Polson, A. Chipouline, and Z. V. Vardeny, "Random lasing in π-conjugated films and infiltrated opals," Adv. Mater. (Weinheim, Ger.) 13, 760-764 (2001).
    [CrossRef]
  20. G. Zacharakis, N. A. Papadogiannis, and T. G. Papazoglou, "Random lasing following two-photon excitation of highly scattering gain media," Appl. Phys. Lett. 81, 2511-2513 (2002).
    [CrossRef]
  21. M. A. Noginov, S. U. Egarievwe, N. Noginova, H. J. Caulfield, and J. C. Wang, "Interferometric studies of coherence in a powder laser," Opt. Mater. 12, 127-134 (1999).
    [CrossRef]
  22. M. Shukri and R. L. Armstrong, "Coherent, directional, laserlike emission from random gain media," Appl. Opt. 39, 4300-4305 (2000).
    [CrossRef]
  23. D. S. Wiersma and A. Lagendijk, "Interference effects in multiple light scattering with gain," Physica A 241, 82-88 (1997).
    [CrossRef]
  24. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, "Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders," J. Opt. Soc. Am. B 10, 2358-2363 (1993).
    [CrossRef]
  25. G. van Soest, F. J. Poelwijk, and A. Lagendijk, "Speckle experiments in random lasers," Phys. Rev. E 65, 046603 (2002).
    [CrossRef]
  26. M. Patra, "Theory for photon statistics of random lasers," Phys. Rev. A 65, 043809 (2002).
    [CrossRef]
  27. L. Florescu and S. John, "Theory of photon statistics and optical coherence in a multiple-scattering random-laser medium," Phys. Rev. E 69, 046603 (2004).
    [CrossRef]
  28. L. Florescu and S. John, "Photon statistics and coherence in light emission from a random laser," Phys. Rev. Lett. 93, 013602 (2004).
    [CrossRef]
  29. T. H. Barnes, "Photodiode array Fourier transform spectrometer with improved dynamic range," Appl. Opt. 24, 3702-3706 (1985).
    [CrossRef] [PubMed]
  30. R. F. Wuerker, J. Munch, and L. O. Heflinger, "Coherence length measured directly by holography," Appl. Opt. 28, 1015-1017 (1989).
    [CrossRef] [PubMed]
  31. V. Devrelis, M. O'Connor, and J. Munch, "Coherence length of single laser pulses as measured by CCD interferometry," Appl. Opt. 34, 5386-5389 (1995).
    [CrossRef] [PubMed]
  32. T. E. Carlsson and B. Nilsson, "Measurement of distance to diffuse surfaces using non-scanning coherence radar," J. Opt. 29, 146-151 (1998).
    [CrossRef]
  33. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

2005 (2)

A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, "Random lasing from surface modified films of zinc oxide nanoparticles," Appl. Surf. Sci. 247, 18-24 (2005).
[CrossRef]

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, "Flexible ultraviolet random lasers based on nanoparticles," Small 1, 956-959 (2005).
[CrossRef]

2004 (5)

D. Anglos, A. Stassinopoulos, R. N. Das, G. Zacharakis, M. Psyllaki, R. Jakubiak, R. A. Vaia, E. P. Giannelis, and S. H. Anastasiadis, "Random laser action in organic-inorganic nanocomposites," J. Opt. Soc. Am. B 21, 208-213 (2004).
[CrossRef]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, "Amplified extended modes in random lasers," Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. A. Frantz, J. Novak, S. N. Williams, and I. Fowlkes, "Dependence of NdSc3(BO3)4 random laser parameters on particle size," J. Opt. Soc. Am. B 21, 191-200 (2004).
[CrossRef]

L. Florescu and S. John, "Theory of photon statistics and optical coherence in a multiple-scattering random-laser medium," Phys. Rev. E 69, 046603 (2004).
[CrossRef]

L. Florescu and S. John, "Photon statistics and coherence in light emission from a random laser," Phys. Rev. Lett. 93, 013602 (2004).
[CrossRef]

2003 (1)

H. Cao, "Lasing in random media," Waves Random Media 13, R1-R39 (2003).
[CrossRef]

2002 (4)

M. Bahoura, K. J. Morris, and M. A. Noginov, "Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size," Opt. Commun. 201, 405-411 (2002).
[CrossRef]

G. Zacharakis, N. A. Papadogiannis, and T. G. Papazoglou, "Random lasing following two-photon excitation of highly scattering gain media," Appl. Phys. Lett. 81, 2511-2513 (2002).
[CrossRef]

G. van Soest, F. J. Poelwijk, and A. Lagendijk, "Speckle experiments in random lasers," Phys. Rev. E 65, 046603 (2002).
[CrossRef]

M. Patra, "Theory for photon statistics of random lasers," Phys. Rev. A 65, 043809 (2002).
[CrossRef]

2001 (3)

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, "Photon statistics of random lasers with resonant feedback," Phys. Rev. Lett. 86, 4524-4527 (2001).
[CrossRef] [PubMed]

R. C. Polson, A. Chipouline, and Z. V. Vardeny, "Random lasing in π-conjugated films and infiltrated opals," Adv. Mater. (Weinheim, Ger.) 13, 760-764 (2001).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

2000 (3)

1999 (2)

M. A. Noginov, S. U. Egarievwe, N. Noginova, H. J. Caulfield, and J. C. Wang, "Interferometric studies of coherence in a powder laser," Opt. Mater. 12, 127-134 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

1998 (1)

T. E. Carlsson and B. Nilsson, "Measurement of distance to diffuse surfaces using non-scanning coherence radar," J. Opt. 29, 146-151 (1998).
[CrossRef]

1997 (1)

D. S. Wiersma and A. Lagendijk, "Interference effects in multiple light scattering with gain," Physica A 241, 82-88 (1997).
[CrossRef]

1996 (1)

F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, and A. J. Heeger, "Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals," Chem. Phys. Lett. 256, 424-430 (1996).
[CrossRef]

1995 (1)

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

1993 (1)

1989 (1)

1986 (1)

V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, "Luminescence and stimulated emission of neodymium in sodium-lanthanum molybdate powders," Sov. J. Quantum Electron. 16, 281-283 (1986).
[CrossRef]

1985 (1)

1968 (1)

V. S. Letokhov, "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26, 835-840 (1968).

1967 (1)

V. S. Letokhov, "Stimulated emission of an ensemble of scattering particles with negative absorption," JETP Lett. 5, 212-215 (1967).

1966 (1)

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, "A laser with a nonresonant feedback," IEEE J. Quantum Electron. 2, 442-446 (1966).
[CrossRef]

Ambartsumyan, R. V.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, "A laser with a nonresonant feedback," IEEE J. Quantum Electron. 2, 442-446 (1966).
[CrossRef]

Anastasiadis, S. H.

A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, "Random lasing from surface modified films of zinc oxide nanoparticles," Appl. Surf. Sci. 247, 18-24 (2005).
[CrossRef]

D. Anglos, A. Stassinopoulos, R. N. Das, G. Zacharakis, M. Psyllaki, R. Jakubiak, R. A. Vaia, E. P. Giannelis, and S. H. Anastasiadis, "Random laser action in organic-inorganic nanocomposites," J. Opt. Soc. Am. B 21, 208-213 (2004).
[CrossRef]

Anglos, D.

A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, "Random lasing from surface modified films of zinc oxide nanoparticles," Appl. Surf. Sci. 247, 18-24 (2005).
[CrossRef]

D. Anglos, A. Stassinopoulos, R. N. Das, G. Zacharakis, M. Psyllaki, R. Jakubiak, R. A. Vaia, E. P. Giannelis, and S. H. Anastasiadis, "Random laser action in organic-inorganic nanocomposites," J. Opt. Soc. Am. B 21, 208-213 (2004).
[CrossRef]

Armstrong, R. L.

Auzel, F.

Bahoura, M.

M. Bahoura, K. J. Morris, and M. A. Noginov, "Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size," Opt. Commun. 201, 405-411 (2002).
[CrossRef]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Barnes, T. H.

Basov, N. G.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, "A laser with a nonresonant feedback," IEEE J. Quantum Electron. 2, 442-446 (1966).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Briskina, Ch. M.

V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, "Luminescence and stimulated emission of neodymium in sodium-lanthanum molybdate powders," Sov. J. Quantum Electron. 16, 281-283 (1986).
[CrossRef]

Cao, C. Q.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, "Photon statistics of random lasers with resonant feedback," Phys. Rev. Lett. 86, 4524-4527 (2001).
[CrossRef] [PubMed]

Cao, H.

H. Cao, "Lasing in random media," Waves Random Media 13, R1-R39 (2003).
[CrossRef]

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, "Photon statistics of random lasers with resonant feedback," Phys. Rev. Lett. 86, 4524-4527 (2001).
[CrossRef] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Carlsson, T. E.

T. E. Carlsson and B. Nilsson, "Measurement of distance to diffuse surfaces using non-scanning coherence radar," J. Opt. 29, 146-151 (1998).
[CrossRef]

Caulfield, H. J.

M. A. Noginov, S. U. Egarievwe, N. Noginova, H. J. Caulfield, and J. C. Wang, "Interferometric studies of coherence in a powder laser," Opt. Mater. 12, 127-134 (1999).
[CrossRef]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Chipouline, A.

R. C. Polson, A. Chipouline, and Z. V. Vardeny, "Random lasing in π-conjugated films and infiltrated opals," Adv. Mater. (Weinheim, Ger.) 13, 760-764 (2001).
[CrossRef]

Das, R. N.

A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, "Random lasing from surface modified films of zinc oxide nanoparticles," Appl. Surf. Sci. 247, 18-24 (2005).
[CrossRef]

D. Anglos, A. Stassinopoulos, R. N. Das, G. Zacharakis, M. Psyllaki, R. Jakubiak, R. A. Vaia, E. P. Giannelis, and S. H. Anastasiadis, "Random laser action in organic-inorganic nanocomposites," J. Opt. Soc. Am. B 21, 208-213 (2004).
[CrossRef]

Devrelis, V.

Diaz-Garcia, M. A.

F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, and A. J. Heeger, "Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals," Chem. Phys. Lett. 256, 424-430 (1996).
[CrossRef]

Egarievwe, S. U.

M. A. Noginov, S. U. Egarievwe, N. Noginova, H. J. Caulfield, and J. C. Wang, "Interferometric studies of coherence in a powder laser," Opt. Mater. 12, 127-134 (1999).
[CrossRef]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Filippidis, G.

Florescu, L.

L. Florescu and S. John, "Photon statistics and coherence in light emission from a random laser," Phys. Rev. Lett. 93, 013602 (2004).
[CrossRef]

L. Florescu and S. John, "Theory of photon statistics and optical coherence in a multiple-scattering random-laser medium," Phys. Rev. E 69, 046603 (2004).
[CrossRef]

Fowlkes, I.

Frantz, A. A.

Giannelis, E. P.

A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, "Random lasing from surface modified films of zinc oxide nanoparticles," Appl. Surf. Sci. 247, 18-24 (2005).
[CrossRef]

D. Anglos, A. Stassinopoulos, R. N. Das, G. Zacharakis, M. Psyllaki, R. Jakubiak, R. A. Vaia, E. P. Giannelis, and S. H. Anastasiadis, "Random laser action in organic-inorganic nanocomposites," J. Opt. Soc. Am. B 21, 208-213 (2004).
[CrossRef]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Gouedard, C.

Heeger, A. J.

F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, and A. J. Heeger, "Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals," Chem. Phys. Lett. 256, 424-430 (1996).
[CrossRef]

Heflinger, L. O.

Hide, F.

F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, and A. J. Heeger, "Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals," Chem. Phys. Lett. 256, 424-430 (1996).
[CrossRef]

Hng, H. H.

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, "Flexible ultraviolet random lasers based on nanoparticles," Small 1, 956-959 (2005).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Husson, D.

Jakubiak, R.

John, S.

L. Florescu and S. John, "Theory of photon statistics and optical coherence in a multiple-scattering random-laser medium," Phys. Rev. E 69, 046603 (2004).
[CrossRef]

L. Florescu and S. John, "Photon statistics and coherence in light emission from a random laser," Phys. Rev. Lett. 93, 013602 (2004).
[CrossRef]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Kryukov, P. G.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, "A laser with a nonresonant feedback," IEEE J. Quantum Electron. 2, 442-446 (1966).
[CrossRef]

Kumar, P.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, "Photon statistics of random lasers with resonant feedback," Phys. Rev. Lett. 86, 4524-4527 (2001).
[CrossRef] [PubMed]

Lagendijk, A.

G. van Soest, F. J. Poelwijk, and A. Lagendijk, "Speckle experiments in random lasers," Phys. Rev. E 65, 046603 (2002).
[CrossRef]

D. S. Wiersma and A. Lagendijk, "Interference effects in multiple light scattering with gain," Physica A 241, 82-88 (1997).
[CrossRef]

Lau, S. P.

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, "Flexible ultraviolet random lasers based on nanoparticles," Small 1, 956-959 (2005).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Leong, E. S. P.

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, "Flexible ultraviolet random lasers based on nanoparticles," Small 1, 956-959 (2005).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov, "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26, 835-840 (1968).

V. S. Letokhov, "Stimulated emission of an ensemble of scattering particles with negative absorption," JETP Lett. 5, 212-215 (1967).

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, "A laser with a nonresonant feedback," IEEE J. Quantum Electron. 2, 442-446 (1966).
[CrossRef]

Li, H.

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, "Flexible ultraviolet random lasers based on nanoparticles," Small 1, 956-959 (2005).
[CrossRef]

Ling, Y.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, "Photon statistics of random lasers with resonant feedback," Phys. Rev. Lett. 86, 4524-4527 (2001).
[CrossRef] [PubMed]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Markushev, V. M.

V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, "Luminescence and stimulated emission of neodymium in sodium-lanthanum molybdate powders," Sov. J. Quantum Electron. 16, 281-283 (1986).
[CrossRef]

Migus, A.

Morris, K. J.

M. Bahoura, K. J. Morris, and M. A. Noginov, "Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size," Opt. Commun. 201, 405-411 (2002).
[CrossRef]

Mujumdar, S.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, "Amplified extended modes in random lasers," Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef] [PubMed]

Munch, J.

Nilsson, B.

T. E. Carlsson and B. Nilsson, "Measurement of distance to diffuse surfaces using non-scanning coherence radar," J. Opt. 29, 146-151 (1998).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. A. Frantz, J. Novak, S. N. Williams, and I. Fowlkes, "Dependence of NdSc3(BO3)4 random laser parameters on particle size," J. Opt. Soc. Am. B 21, 191-200 (2004).
[CrossRef]

M. Bahoura, K. J. Morris, and M. A. Noginov, "Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size," Opt. Commun. 201, 405-411 (2002).
[CrossRef]

M. A. Noginov, S. U. Egarievwe, N. Noginova, H. J. Caulfield, and J. C. Wang, "Interferometric studies of coherence in a powder laser," Opt. Mater. 12, 127-134 (1999).
[CrossRef]

Noginova, N.

M. A. Noginov, S. U. Egarievwe, N. Noginova, H. J. Caulfield, and J. C. Wang, "Interferometric studies of coherence in a powder laser," Opt. Mater. 12, 127-134 (1999).
[CrossRef]

Novak, J.

O'Connor, M.

Papadogiannis, N. A.

G. Zacharakis, N. A. Papadogiannis, and T. G. Papazoglou, "Random lasing following two-photon excitation of highly scattering gain media," Appl. Phys. Lett. 81, 2511-2513 (2002).
[CrossRef]

G. Zacharakis, N. A. Papadogiannis, G. Filippidis, and T. G. Papazoglou, "Photon statistics of laserlike emission from polymeric scattering gain media," Opt. Lett. 25, 923-925 (2000).
[CrossRef]

Papazoglou, T. G.

G. Zacharakis, N. A. Papadogiannis, and T. G. Papazoglou, "Random lasing following two-photon excitation of highly scattering gain media," Appl. Phys. Lett. 81, 2511-2513 (2002).
[CrossRef]

G. Zacharakis, N. A. Papadogiannis, G. Filippidis, and T. G. Papazoglou, "Photon statistics of laserlike emission from polymeric scattering gain media," Opt. Lett. 25, 923-925 (2000).
[CrossRef]

Patra, M.

M. Patra, "Theory for photon statistics of random lasers," Phys. Rev. A 65, 043809 (2002).
[CrossRef]

Poelwijk, F. J.

G. van Soest, F. J. Poelwijk, and A. Lagendijk, "Speckle experiments in random lasers," Phys. Rev. E 65, 046603 (2002).
[CrossRef]

Polson, R. C.

R. C. Polson, A. Chipouline, and Z. V. Vardeny, "Random lasing in π-conjugated films and infiltrated opals," Adv. Mater. (Weinheim, Ger.) 13, 760-764 (2001).
[CrossRef]

Psyllaki, M.

Ricci, M.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, "Amplified extended modes in random lasers," Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef] [PubMed]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Sauteret, C.

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Schwartz, B. J.

F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, and A. J. Heeger, "Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals," Chem. Phys. Lett. 256, 424-430 (1996).
[CrossRef]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Shukri, M.

Stassinopoulos, A.

A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, "Random lasing from surface modified films of zinc oxide nanoparticles," Appl. Surf. Sci. 247, 18-24 (2005).
[CrossRef]

D. Anglos, A. Stassinopoulos, R. N. Das, G. Zacharakis, M. Psyllaki, R. Jakubiak, R. A. Vaia, E. P. Giannelis, and S. H. Anastasiadis, "Random laser action in organic-inorganic nanocomposites," J. Opt. Soc. Am. B 21, 208-213 (2004).
[CrossRef]

Torre, R.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, "Amplified extended modes in random lasers," Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef] [PubMed]

Vaia, R. A.

van Soest, G.

G. van Soest, F. J. Poelwijk, and A. Lagendijk, "Speckle experiments in random lasers," Phys. Rev. E 65, 046603 (2002).
[CrossRef]

Vardeny, Z. V.

R. C. Polson, A. Chipouline, and Z. V. Vardeny, "Random lasing in π-conjugated films and infiltrated opals," Adv. Mater. (Weinheim, Ger.) 13, 760-764 (2001).
[CrossRef]

Wang, J. C.

M. A. Noginov, S. U. Egarievwe, N. Noginova, H. J. Caulfield, and J. C. Wang, "Interferometric studies of coherence in a powder laser," Opt. Mater. 12, 127-134 (1999).
[CrossRef]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Wiersma, D.

D. Wiersma, "The smallest random laser," Nature 406, 132-133 (2000).
[CrossRef] [PubMed]

Wiersma, D. S.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, "Amplified extended modes in random lasers," Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef] [PubMed]

D. S. Wiersma and A. Lagendijk, "Interference effects in multiple light scattering with gain," Physica A 241, 82-88 (1997).
[CrossRef]

Williams, S. N.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Wuerker, R. F.

Xu, J. Y.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, "Photon statistics of random lasers with resonant feedback," Phys. Rev. Lett. 86, 4524-4527 (2001).
[CrossRef] [PubMed]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Yang, H.

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, "Flexible ultraviolet random lasers based on nanoparticles," Small 1, 956-959 (2005).
[CrossRef]

Yang, P.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Yu, S. F.

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, "Flexible ultraviolet random lasers based on nanoparticles," Small 1, 956-959 (2005).
[CrossRef]

Yuen, C.

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, "Flexible ultraviolet random lasers based on nanoparticles," Small 1, 956-959 (2005).
[CrossRef]

Zacharakis, G.

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Zhu, G.

Zolin, V. F.

V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, "Luminescence and stimulated emission of neodymium in sodium-lanthanum molybdate powders," Sov. J. Quantum Electron. 16, 281-283 (1986).
[CrossRef]

Adv. Mater. (Weinheim, Ger.) (1)

R. C. Polson, A. Chipouline, and Z. V. Vardeny, "Random lasing in π-conjugated films and infiltrated opals," Adv. Mater. (Weinheim, Ger.) 13, 760-764 (2001).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

G. Zacharakis, N. A. Papadogiannis, and T. G. Papazoglou, "Random lasing following two-photon excitation of highly scattering gain media," Appl. Phys. Lett. 81, 2511-2513 (2002).
[CrossRef]

Appl. Surf. Sci. (1)

A. Stassinopoulos, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, "Random lasing from surface modified films of zinc oxide nanoparticles," Appl. Surf. Sci. 247, 18-24 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, and A. J. Heeger, "Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals," Chem. Phys. Lett. 256, 424-430 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, "A laser with a nonresonant feedback," IEEE J. Quantum Electron. 2, 442-446 (1966).
[CrossRef]

J. Opt. (1)

T. E. Carlsson and B. Nilsson, "Measurement of distance to diffuse surfaces using non-scanning coherence radar," J. Opt. 29, 146-151 (1998).
[CrossRef]

J. Opt. Soc. Am. B (3)

JETP Lett. (1)

V. S. Letokhov, "Stimulated emission of an ensemble of scattering particles with negative absorption," JETP Lett. 5, 212-215 (1967).

Nature (2)

D. Wiersma, "The smallest random laser," Nature 406, 132-133 (2000).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Opt. Commun. (1)

M. Bahoura, K. J. Morris, and M. A. Noginov, "Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size," Opt. Commun. 201, 405-411 (2002).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

M. A. Noginov, S. U. Egarievwe, N. Noginova, H. J. Caulfield, and J. C. Wang, "Interferometric studies of coherence in a powder laser," Opt. Mater. 12, 127-134 (1999).
[CrossRef]

Phys. Rev. A (1)

M. Patra, "Theory for photon statistics of random lasers," Phys. Rev. A 65, 043809 (2002).
[CrossRef]

Phys. Rev. E (2)

L. Florescu and S. John, "Theory of photon statistics and optical coherence in a multiple-scattering random-laser medium," Phys. Rev. E 69, 046603 (2004).
[CrossRef]

G. van Soest, F. J. Poelwijk, and A. Lagendijk, "Speckle experiments in random lasers," Phys. Rev. E 65, 046603 (2002).
[CrossRef]

Phys. Rev. Lett. (4)

L. Florescu and S. John, "Photon statistics and coherence in light emission from a random laser," Phys. Rev. Lett. 93, 013602 (2004).
[CrossRef]

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, "Photon statistics of random lasers with resonant feedback," Phys. Rev. Lett. 86, 4524-4527 (2001).
[CrossRef] [PubMed]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, "Amplified extended modes in random lasers," Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Physica A (1)

D. S. Wiersma and A. Lagendijk, "Interference effects in multiple light scattering with gain," Physica A 241, 82-88 (1997).
[CrossRef]

Science (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Small (1)

S. P. Lau, H. Yang, S. F. Yu, C. Yuen, E. S. P. Leong, H. Li, and H. H. Hng, "Flexible ultraviolet random lasers based on nanoparticles," Small 1, 956-959 (2005).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, "Luminescence and stimulated emission of neodymium in sodium-lanthanum molybdate powders," Sov. J. Quantum Electron. 16, 281-283 (1986).
[CrossRef]

Sov. Phys. JETP (1)

V. S. Letokhov, "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26, 835-840 (1968).

Waves Random Media (1)

H. Cao, "Lasing in random media," Waves Random Media 13, R1-R39 (2003).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of the principles of the interferometer setup: L 1 , L 2 , L 3 , lenses; N, edge filter for the laser wavelength of 532 nm ; M 1 , M 2 , tilted mirrors; BS, beam splitter.

Fig. 2
Fig. 2

Emission intensity (open squares) and the spectral width (open triangles) are shown as a function of the excitation energy density. The excitation area is 7 mm × 7 mm . The excitation energy density threshold is estimated at 19 mJ cm 2 .

Fig. 3
Fig. 3

(a), (d) Intensity profile and (b), (c) corresponding image of the interferograms recorded at excitation energy densities of (a), (b) 74 mJ cm 2 and (c), (d) 12 mJ cm 2 . [Image intensity in (c) is multiplied by a factor of 4 to facilitate fringe visibility.]

Fig. 4
Fig. 4

(a) Fringe visibility as a function of the OPD and (b) fluorescence emission spectra at excitation energy densities of 6.6 (solid curve), 12 (dashed curve), 32 (dashed–dotted curve), and 74 mJ cm 2 (dotted curve), respectively.

Fig. 5
Fig. 5

RMS coherence length Δ l RMS as a function of the excitation energy density J p . Error bars indicate shot-to-shot variation obtained from a set of three pulses at each J p value. The first three points, at low J p , represent accumulation of the signal from three consecutive shots.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I tot ( τ ) = I 1 + I 2 + 2 I 1 I 2 γ 12 ( τ ) cos [ 2 π λ m c τ a 12 ( τ ) ] ,
Δ l RMS = c 0 + τ 2 V 2 ( τ ) d τ 0 + V 2 ( τ ) d τ .

Metrics