Abstract

We introduce a generalized numerical method to calculate short-pulsed laser propagation in a wide class of multiphoton absorbing materials. The method has no restrictions on the input pulse widths varying from nanosecond to femtosecond, and its numerical solution is both radially and temporarily dependent, enabling us to check numerically the validity of assuming radially constant solutions, which ensures that the true peak intensity falls below the damage causing level. A new feature of our technique enables us to determine quantitatively the contributions to the total absorption due to every electronic energy level. We found excellent agreement between our calculations and experiments using sample materials ranging from reverse saturable absorbers, two-photon absorbers with excited-state absorption to three-photon absorbers. We applied our technique to a two-photon absorber with excited-state absorption and found approximately 1 order of magnitude increase in the absorption when femtosecond pulses were used in place of nanosecond pulses.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (69)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription