Abstract

Nonlinear optical borate crystals of Gd1xScxCa4O(BO3)3 and Gd1xLuxCa4O(BO3)3 have been grown and characterized. By changing the composition of these crystals, their optical birefringence can be controlled to obtain second-harmonic generations (SHG) in the ranges of 790824nm along the Y axis and 920963nm along the Z axis through noncritical phase matching (NCPM). The refractive indices of grown crystals were measured with a minimum-deviation technique. The experimental results of NCPM conditions for SHG are in good agreement with the theoretical predictions.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. L. Damelet, "Linear and nonlinear properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3," J. Opt. Soc. Am. B 14, 2238-2247 (1997).
    [CrossRef]
  2. M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, "Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material," Jpn. J. Appl. Phys., Part 2 36, L276-L279 (1997).
    [CrossRef]
  3. H. Furuya, M. Yoshimura, T. Kobayashi, K. Murase, Y. Mori, and T. Sasaki, "Crystal growth and characterization of GdxY1−xCa4(BO3)3 crystal," J. Cryst. Growth 198/199, 560-563 (2002).
    [CrossRef]
  4. V. G. Dimitiev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Crystals, Vol. 64 of Springer Series in Optical Science (Springer-Verlag, 1991), pp. 17-21.
  5. Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, "Non-critical phase matching of GdxY1−xCa4O(BO3)3(GdxY1−xCOB) crystal," Solid State Commun. 120, 397-400 (2001).
    [CrossRef]
  6. D. Klimm, S. Ganschow, R. Bertram, J. Doerschel, V. Bermudez, and A. Klos, "Phase separation during the melting of oxide borates LnCa4O(BO3)3(Ln=Y,Gd)," Mater. Res. Bull. 37, 1737-1747 (2002).
    [CrossRef]
  7. M. V. Pack, D. J. Armstrong, A. V. Smith, G. Aka, B. Ferrand, and D. Pelenc, "Measurement of the χ(2) tensor of GdCa4O(BO3)3 and YCa4O(BO3)3 crystals," J. Opt. Soc. Am. B 22, 417-425 (2005).
    [CrossRef]

2005 (1)

2002 (2)

D. Klimm, S. Ganschow, R. Bertram, J. Doerschel, V. Bermudez, and A. Klos, "Phase separation during the melting of oxide borates LnCa4O(BO3)3(Ln=Y,Gd)," Mater. Res. Bull. 37, 1737-1747 (2002).
[CrossRef]

H. Furuya, M. Yoshimura, T. Kobayashi, K. Murase, Y. Mori, and T. Sasaki, "Crystal growth and characterization of GdxY1−xCa4(BO3)3 crystal," J. Cryst. Growth 198/199, 560-563 (2002).
[CrossRef]

2001 (1)

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, "Non-critical phase matching of GdxY1−xCa4O(BO3)3(GdxY1−xCOB) crystal," Solid State Commun. 120, 397-400 (2001).
[CrossRef]

1997 (2)

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. L. Damelet, "Linear and nonlinear properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3," J. Opt. Soc. Am. B 14, 2238-2247 (1997).
[CrossRef]

M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, "Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material," Jpn. J. Appl. Phys., Part 2 36, L276-L279 (1997).
[CrossRef]

Aka, G.

Armstrong, D. J.

Bermudez, V.

D. Klimm, S. Ganschow, R. Bertram, J. Doerschel, V. Bermudez, and A. Klos, "Phase separation during the melting of oxide borates LnCa4O(BO3)3(Ln=Y,Gd)," Mater. Res. Bull. 37, 1737-1747 (2002).
[CrossRef]

Bertram, R.

D. Klimm, S. Ganschow, R. Bertram, J. Doerschel, V. Bermudez, and A. Klos, "Phase separation during the melting of oxide borates LnCa4O(BO3)3(Ln=Y,Gd)," Mater. Res. Bull. 37, 1737-1747 (2002).
[CrossRef]

Colin, P.

Coquelin, P.

Damelet, J. L.

Dimitiev, V. G.

V. G. Dimitiev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Crystals, Vol. 64 of Springer Series in Optical Science (Springer-Verlag, 1991), pp. 17-21.

Doerschel, J.

D. Klimm, S. Ganschow, R. Bertram, J. Doerschel, V. Bermudez, and A. Klos, "Phase separation during the melting of oxide borates LnCa4O(BO3)3(Ln=Y,Gd)," Mater. Res. Bull. 37, 1737-1747 (2002).
[CrossRef]

Ferrand, B.

Fu, K.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, "Non-critical phase matching of GdxY1−xCa4O(BO3)3(GdxY1−xCOB) crystal," Solid State Commun. 120, 397-400 (2001).
[CrossRef]

Furuya, H.

H. Furuya, M. Yoshimura, T. Kobayashi, K. Murase, Y. Mori, and T. Sasaki, "Crystal growth and characterization of GdxY1−xCa4(BO3)3 crystal," J. Cryst. Growth 198/199, 560-563 (2002).
[CrossRef]

M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, "Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material," Jpn. J. Appl. Phys., Part 2 36, L276-L279 (1997).
[CrossRef]

Ganschow, S.

D. Klimm, S. Ganschow, R. Bertram, J. Doerschel, V. Bermudez, and A. Klos, "Phase separation during the melting of oxide borates LnCa4O(BO3)3(Ln=Y,Gd)," Mater. Res. Bull. 37, 1737-1747 (2002).
[CrossRef]

Gurzadyan, G. G.

V. G. Dimitiev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Crystals, Vol. 64 of Springer Series in Optical Science (Springer-Verlag, 1991), pp. 17-21.

Iwai, M.

M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, "Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material," Jpn. J. Appl. Phys., Part 2 36, L276-L279 (1997).
[CrossRef]

Kahn-Harari, A.

Klimm, D.

D. Klimm, S. Ganschow, R. Bertram, J. Doerschel, V. Bermudez, and A. Klos, "Phase separation during the melting of oxide borates LnCa4O(BO3)3(Ln=Y,Gd)," Mater. Res. Bull. 37, 1737-1747 (2002).
[CrossRef]

Klos, A.

D. Klimm, S. Ganschow, R. Bertram, J. Doerschel, V. Bermudez, and A. Klos, "Phase separation during the melting of oxide borates LnCa4O(BO3)3(Ln=Y,Gd)," Mater. Res. Bull. 37, 1737-1747 (2002).
[CrossRef]

Kobayashi, T.

H. Furuya, M. Yoshimura, T. Kobayashi, K. Murase, Y. Mori, and T. Sasaki, "Crystal growth and characterization of GdxY1−xCa4(BO3)3 crystal," J. Cryst. Growth 198/199, 560-563 (2002).
[CrossRef]

M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, "Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material," Jpn. J. Appl. Phys., Part 2 36, L276-L279 (1997).
[CrossRef]

Liu, Y.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, "Non-critical phase matching of GdxY1−xCa4O(BO3)3(GdxY1−xCOB) crystal," Solid State Commun. 120, 397-400 (2001).
[CrossRef]

Mori, Y.

H. Furuya, M. Yoshimura, T. Kobayashi, K. Murase, Y. Mori, and T. Sasaki, "Crystal growth and characterization of GdxY1−xCa4(BO3)3 crystal," J. Cryst. Growth 198/199, 560-563 (2002).
[CrossRef]

M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, "Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material," Jpn. J. Appl. Phys., Part 2 36, L276-L279 (1997).
[CrossRef]

Mougel, F.

Murase, K.

H. Furuya, M. Yoshimura, T. Kobayashi, K. Murase, Y. Mori, and T. Sasaki, "Crystal growth and characterization of GdxY1−xCa4(BO3)3 crystal," J. Cryst. Growth 198/199, 560-563 (2002).
[CrossRef]

Nikogosyan, D. N.

V. G. Dimitiev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Crystals, Vol. 64 of Springer Series in Optical Science (Springer-Verlag, 1991), pp. 17-21.

Pack, M. V.

Pelenc, D.

Salin, F.

Sasaki, T.

H. Furuya, M. Yoshimura, T. Kobayashi, K. Murase, Y. Mori, and T. Sasaki, "Crystal growth and characterization of GdxY1−xCa4(BO3)3 crystal," J. Cryst. Growth 198/199, 560-563 (2002).
[CrossRef]

M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, "Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material," Jpn. J. Appl. Phys., Part 2 36, L276-L279 (1997).
[CrossRef]

Shao, Z.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, "Non-critical phase matching of GdxY1−xCa4O(BO3)3(GdxY1−xCOB) crystal," Solid State Commun. 120, 397-400 (2001).
[CrossRef]

Smith, A. V.

Song, R.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, "Non-critical phase matching of GdxY1−xCa4O(BO3)3(GdxY1−xCOB) crystal," Solid State Commun. 120, 397-400 (2001).
[CrossRef]

Vivien, D.

Wang, J.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, "Non-critical phase matching of GdxY1−xCa4O(BO3)3(GdxY1−xCOB) crystal," Solid State Commun. 120, 397-400 (2001).
[CrossRef]

Wang, Z.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, "Non-critical phase matching of GdxY1−xCa4O(BO3)3(GdxY1−xCOB) crystal," Solid State Commun. 120, 397-400 (2001).
[CrossRef]

Wei, J.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, "Non-critical phase matching of GdxY1−xCa4O(BO3)3(GdxY1−xCOB) crystal," Solid State Commun. 120, 397-400 (2001).
[CrossRef]

Xu, X.

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, "Non-critical phase matching of GdxY1−xCa4O(BO3)3(GdxY1−xCOB) crystal," Solid State Commun. 120, 397-400 (2001).
[CrossRef]

Yoshimura, M.

H. Furuya, M. Yoshimura, T. Kobayashi, K. Murase, Y. Mori, and T. Sasaki, "Crystal growth and characterization of GdxY1−xCa4(BO3)3 crystal," J. Cryst. Growth 198/199, 560-563 (2002).
[CrossRef]

J. Cryst. Growth (1)

H. Furuya, M. Yoshimura, T. Kobayashi, K. Murase, Y. Mori, and T. Sasaki, "Crystal growth and characterization of GdxY1−xCa4(BO3)3 crystal," J. Cryst. Growth 198/199, 560-563 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys., Part 2 (1)

M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, "Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material," Jpn. J. Appl. Phys., Part 2 36, L276-L279 (1997).
[CrossRef]

Mater. Res. Bull. (1)

D. Klimm, S. Ganschow, R. Bertram, J. Doerschel, V. Bermudez, and A. Klos, "Phase separation during the melting of oxide borates LnCa4O(BO3)3(Ln=Y,Gd)," Mater. Res. Bull. 37, 1737-1747 (2002).
[CrossRef]

Solid State Commun. (1)

Z. Wang, X. Xu, K. Fu, R. Song, J. Wang, J. Wei, Y. Liu, and Z. Shao, "Non-critical phase matching of GdxY1−xCa4O(BO3)3(GdxY1−xCOB) crystal," Solid State Commun. 120, 397-400 (2001).
[CrossRef]

Other (1)

V. G. Dimitiev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Crystals, Vol. 64 of Springer Series in Optical Science (Springer-Verlag, 1991), pp. 17-21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Gd 1 x Sc x Ca 4 O ( B O 3 ) 3 ( x = 0.1 for the starting melt) and Gd 1 x Lu x Ca 4 O ( B O 3 ) 3 ( x = 0.07 and 0.13 for the starting melts) crystals: (a) Gd 1 x Sc x Ca 4 O ( B O 3 ) 3 grown crystal and (b) polished crystal samples of Gd 1 x Lu x Ca 4 O ( B O 3 ) 3 .

Fig. 2
Fig. 2

The refractive index dispersion curves of grown crystals. The points are experimental data and the curves are fitted by the single-pole Sellmeier equations.

Fig. 3
Fig. 3

Phase-matching curves in the principal planes for Type I SHG in crystals (a) Gd 0.96 Sc 0.04 Ca 4 O ( B O 3 ) 3 , (b) Gd 0.93 Lu 0.07 Ca 4 O ( B O 3 ) 3 , and (c) Gd 0.871 Lu 0.129 Ca 4 O ( B O 3 ) 3 . The open circles are experimental data.

Fig. 4
Fig. 4

Angular-tuning curve for SHG along the Y axis for crystals (a) Gd 0.871 Lu 0.129 Ca 4 O ( B O 3 ) 3 at 396.26 nm , (b) Gd 0.96 Sc 0.04 Ca 4 O ( B O 3 ) 3 at 400.66 nm , and (c) Gd 0.93 Lu 0.07 Ca 4 O ( B O 3 ) 3 at 403.15 nm .

Tables (3)

Tables Icon

Table 1 Chemical Compositions of Grown Crystals

Tables Icon

Table 2 Calculated Parameters of Sellmeier Equations

Tables Icon

Table 3 Phase-Matching Wavelength in NCPM Conditions of Grown Crystals

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 = A + B λ 2 C D λ 2 ,

Metrics