Abstract

We report that mid-infrared wavelengths larger than 4.0μm are efficiently generated in a periodically poled lithium niobate as a counterpropagating backward optical parametric oscillator. In comparison with the forward optical parametric oscillator, the backward configuration does not require a cavity mirror to establish laser oscillations. Also, the changing curves of the threshold intensity with and without the idler absorption for beyond 4.0μm generation are quite different. Whether the idler absorption is considered or not, the conversion efficiency of both the signal and the idler will always increase with the pump intensity above the threshold. However, as the idler absorption cannot be neglected, the signal becomes larger than that without the idler absorption, while the idler gets smaller, and the threshold intensity is lower than that in forward QPM optical parametric generation without a cavity mirror only when the idler wavelength is less than 5.6μm. The design that is presented offers practical mid-infrared generation with a low pump threshold.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Henningsen, M. Garbuny, and R. L. Byer, "Remote detection of CO by parametric tunable laser," Appl. Phys. Lett. 24, 242-244 (1974).
    [CrossRef]
  2. R. A. Baumgartner and R. L. Byer, "Remote SO2 measurement at 4 μm with a continuously tunable source," Opt. Lett. 2, 163-165 (1978).
    [CrossRef] [PubMed]
  3. S. E. Harris, "Proposed backward wave oscillation in the infrared," Appl. Phys. Lett. 9, 114-116 (1966).
    [CrossRef]
  4. Y. J. Ding, S. J. Lee, and J. B. Khurgin, "Transversely pump counterpropagating optical parametric oscillation and amplification," Phys. Rev. Lett. 75, 429-432 (1995).
    [CrossRef] [PubMed]
  5. Y. J. Ding and J. B. Khurgin, "Backward optical parametric oscillators and amplifiers," IEEE J. Quantum Electron. 32, 1574-1582 (1996).
    [CrossRef]
  6. G. D. Landry and T. A. Maldonado, "Switching and second harmonic generation using counterpropagating QPM in a mirrorless configuration," J. Lightwave Technol. 17, 316-327 (1999).
    [CrossRef]
  7. G. D. Landry and T. A. Maldonado, "Counterpropagating quasi-phase matching: a generalized analysis," J. Opt. Soc. Am. B 21, 1509-1520 (2004).
    [CrossRef]
  8. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, "Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3," Opt. Lett. 21, 591-593 (1996).
    [CrossRef] [PubMed]
  9. L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, and D. C. Hanna, "Efficient, low-threshold synchronously-pumped parametric oscillation in periodically poled lithium niobate over the 1.3 μmto5.3 μm range," Opt. Commun. 152, 55-58 (1998).
    [CrossRef]
  10. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, "Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate," Opt. Lett. 22, 1458-1460 (1997).
    [CrossRef]
  11. A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mallis, "Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling," Appl. Phys. Lett. 81, 4946-4948 (2002).
    [CrossRef]
  12. C. B. Clausen, O. Bang, and Y. S. Kivshar, "Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media," Phys. Rev. Lett. 78, 4749-4752 (1997).
    [CrossRef]
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).
  14. Y. Q. Qin, S. M. Pietralunga, and M. Martinelli, "Quasi-phase-matching difference frequency generation in a mirrorless counterpropagating configuration," J. Lightwave Technol. 19, 1298-1306 (2001).
    [CrossRef]
  15. Y. Paltier, D. Mahalu, H. Shtrikman, G. Bunin, and U. Meirav, "Short period surface superlattices formed by plasma etching," Semicond. Sci. Technol. 12, 987-990 (1997).
    [CrossRef]
  16. M. Sato, T. Hatanaka, S. Izumi, T. Taniuchi, and H. Ito, "Generation of 6.6 μm optical parametric oscillation with periodically poled LiNbO3," Appl. Opt. 38, 2560-2563 (1999).
    [CrossRef]
  17. L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, "Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption," Appl. Phys. Lett. 73, 1610-1612 (1998).
    [CrossRef]
  18. H. Su, Y. Q. Qin, H. C. Guo, and S. H. Tang, "Periodically poled LiNbO3: Optical parametric oscillation at wavelengths larger than 4.0 μm with strong idler absorption by focused Gaussian beam," J. Appl. Phys. 97, 113105-113105-04 (2005).
    [CrossRef]

2005

H. Su, Y. Q. Qin, H. C. Guo, and S. H. Tang, "Periodically poled LiNbO3: Optical parametric oscillation at wavelengths larger than 4.0 μm with strong idler absorption by focused Gaussian beam," J. Appl. Phys. 97, 113105-113105-04 (2005).
[CrossRef]

2004

2002

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mallis, "Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling," Appl. Phys. Lett. 81, 4946-4948 (2002).
[CrossRef]

2001

1999

1998

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, "Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption," Appl. Phys. Lett. 73, 1610-1612 (1998).
[CrossRef]

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, and D. C. Hanna, "Efficient, low-threshold synchronously-pumped parametric oscillation in periodically poled lithium niobate over the 1.3 μmto5.3 μm range," Opt. Commun. 152, 55-58 (1998).
[CrossRef]

1997

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, "Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate," Opt. Lett. 22, 1458-1460 (1997).
[CrossRef]

C. B. Clausen, O. Bang, and Y. S. Kivshar, "Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media," Phys. Rev. Lett. 78, 4749-4752 (1997).
[CrossRef]

Y. Paltier, D. Mahalu, H. Shtrikman, G. Bunin, and U. Meirav, "Short period surface superlattices formed by plasma etching," Semicond. Sci. Technol. 12, 987-990 (1997).
[CrossRef]

1996

1995

Y. J. Ding, S. J. Lee, and J. B. Khurgin, "Transversely pump counterpropagating optical parametric oscillation and amplification," Phys. Rev. Lett. 75, 429-432 (1995).
[CrossRef] [PubMed]

1978

1974

T. Henningsen, M. Garbuny, and R. L. Byer, "Remote detection of CO by parametric tunable laser," Appl. Phys. Lett. 24, 242-244 (1974).
[CrossRef]

1966

S. E. Harris, "Proposed backward wave oscillation in the infrared," Appl. Phys. Lett. 9, 114-116 (1966).
[CrossRef]

Apostolopoulos, V.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mallis, "Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling," Appl. Phys. Lett. 81, 4946-4948 (2002).
[CrossRef]

Arbore, M. A.

Bang, O.

C. B. Clausen, O. Bang, and Y. S. Kivshar, "Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media," Phys. Rev. Lett. 78, 4749-4752 (1997).
[CrossRef]

Baumgartner, R. A.

Bosenberg, W. R.

Bunin, G.

Y. Paltier, D. Mahalu, H. Shtrikman, G. Bunin, and U. Meirav, "Short period surface superlattices formed by plasma etching," Semicond. Sci. Technol. 12, 987-990 (1997).
[CrossRef]

Burr, K. C.

Busacca, A. C.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mallis, "Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling," Appl. Phys. Lett. 81, 4946-4948 (2002).
[CrossRef]

Butterworth, S. D.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, and D. C. Hanna, "Efficient, low-threshold synchronously-pumped parametric oscillation in periodically poled lithium niobate over the 1.3 μmto5.3 μm range," Opt. Commun. 152, 55-58 (1998).
[CrossRef]

Byer, R. L.

Clausen, C. B.

C. B. Clausen, O. Bang, and Y. S. Kivshar, "Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media," Phys. Rev. Lett. 78, 4749-4752 (1997).
[CrossRef]

Ding, Y. J.

Y. J. Ding and J. B. Khurgin, "Backward optical parametric oscillators and amplifiers," IEEE J. Quantum Electron. 32, 1574-1582 (1996).
[CrossRef]

Y. J. Ding, S. J. Lee, and J. B. Khurgin, "Transversely pump counterpropagating optical parametric oscillation and amplification," Phys. Rev. Lett. 75, 429-432 (1995).
[CrossRef] [PubMed]

Eason, R. W.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mallis, "Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling," Appl. Phys. Lett. 81, 4946-4948 (2002).
[CrossRef]

Eckardt, R. C.

Fejer, M. M.

Garbuny, M.

T. Henningsen, M. Garbuny, and R. L. Byer, "Remote detection of CO by parametric tunable laser," Appl. Phys. Lett. 24, 242-244 (1974).
[CrossRef]

Guo, H. C.

H. Su, Y. Q. Qin, H. C. Guo, and S. H. Tang, "Periodically poled LiNbO3: Optical parametric oscillation at wavelengths larger than 4.0 μm with strong idler absorption by focused Gaussian beam," J. Appl. Phys. 97, 113105-113105-04 (2005).
[CrossRef]

Hanna, D. C.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, "Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption," Appl. Phys. Lett. 73, 1610-1612 (1998).
[CrossRef]

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, and D. C. Hanna, "Efficient, low-threshold synchronously-pumped parametric oscillation in periodically poled lithium niobate over the 1.3 μmto5.3 μm range," Opt. Commun. 152, 55-58 (1998).
[CrossRef]

Harris, S. E.

S. E. Harris, "Proposed backward wave oscillation in the infrared," Appl. Phys. Lett. 9, 114-116 (1966).
[CrossRef]

Hatanaka, T.

Henningsen, T.

T. Henningsen, M. Garbuny, and R. L. Byer, "Remote detection of CO by parametric tunable laser," Appl. Phys. Lett. 24, 242-244 (1974).
[CrossRef]

Ito, H.

Izumi, S.

Khurgin, J. B.

Y. J. Ding and J. B. Khurgin, "Backward optical parametric oscillators and amplifiers," IEEE J. Quantum Electron. 32, 1574-1582 (1996).
[CrossRef]

Y. J. Ding, S. J. Lee, and J. B. Khurgin, "Transversely pump counterpropagating optical parametric oscillation and amplification," Phys. Rev. Lett. 75, 429-432 (1995).
[CrossRef] [PubMed]

Kivshar, Y. S.

C. B. Clausen, O. Bang, and Y. S. Kivshar, "Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media," Phys. Rev. Lett. 78, 4749-4752 (1997).
[CrossRef]

Landry, G. D.

Lee, S. J.

Y. J. Ding, S. J. Lee, and J. B. Khurgin, "Transversely pump counterpropagating optical parametric oscillation and amplification," Phys. Rev. Lett. 75, 429-432 (1995).
[CrossRef] [PubMed]

Lefort, L.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, and D. C. Hanna, "Efficient, low-threshold synchronously-pumped parametric oscillation in periodically poled lithium niobate over the 1.3 μmto5.3 μm range," Opt. Commun. 152, 55-58 (1998).
[CrossRef]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, "Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption," Appl. Phys. Lett. 73, 1610-1612 (1998).
[CrossRef]

Mahalu, D.

Y. Paltier, D. Mahalu, H. Shtrikman, G. Bunin, and U. Meirav, "Short period surface superlattices formed by plasma etching," Semicond. Sci. Technol. 12, 987-990 (1997).
[CrossRef]

Maldonado, T. A.

Mallis, S.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mallis, "Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling," Appl. Phys. Lett. 81, 4946-4948 (2002).
[CrossRef]

Martinelli, M.

Meirav, U.

Y. Paltier, D. Mahalu, H. Shtrikman, G. Bunin, and U. Meirav, "Short period surface superlattices formed by plasma etching," Semicond. Sci. Technol. 12, 987-990 (1997).
[CrossRef]

Myers, L. E.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).

Paltier, Y.

Y. Paltier, D. Mahalu, H. Shtrikman, G. Bunin, and U. Meirav, "Short period surface superlattices formed by plasma etching," Semicond. Sci. Technol. 12, 987-990 (1997).
[CrossRef]

Pietralunga, S. M.

Puech, K.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, "Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption," Appl. Phys. Lett. 73, 1610-1612 (1998).
[CrossRef]

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, and D. C. Hanna, "Efficient, low-threshold synchronously-pumped parametric oscillation in periodically poled lithium niobate over the 1.3 μmto5.3 μm range," Opt. Commun. 152, 55-58 (1998).
[CrossRef]

Qin, Y. Q.

H. Su, Y. Q. Qin, H. C. Guo, and S. H. Tang, "Periodically poled LiNbO3: Optical parametric oscillation at wavelengths larger than 4.0 μm with strong idler absorption by focused Gaussian beam," J. Appl. Phys. 97, 113105-113105-04 (2005).
[CrossRef]

Y. Q. Qin, S. M. Pietralunga, and M. Martinelli, "Quasi-phase-matching difference frequency generation in a mirrorless counterpropagating configuration," J. Lightwave Technol. 19, 1298-1306 (2001).
[CrossRef]

Ross, G. W.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, and D. C. Hanna, "Efficient, low-threshold synchronously-pumped parametric oscillation in periodically poled lithium niobate over the 1.3 μmto5.3 μm range," Opt. Commun. 152, 55-58 (1998).
[CrossRef]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, "Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption," Appl. Phys. Lett. 73, 1610-1612 (1998).
[CrossRef]

Sato, M.

Shtrikman, H.

Y. Paltier, D. Mahalu, H. Shtrikman, G. Bunin, and U. Meirav, "Short period surface superlattices formed by plasma etching," Semicond. Sci. Technol. 12, 987-990 (1997).
[CrossRef]

Smith, P. G. R.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, and D. C. Hanna, "Efficient, low-threshold synchronously-pumped parametric oscillation in periodically poled lithium niobate over the 1.3 μmto5.3 μm range," Opt. Commun. 152, 55-58 (1998).
[CrossRef]

Sones, C. L.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mallis, "Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling," Appl. Phys. Lett. 81, 4946-4948 (2002).
[CrossRef]

Su, H.

H. Su, Y. Q. Qin, H. C. Guo, and S. H. Tang, "Periodically poled LiNbO3: Optical parametric oscillation at wavelengths larger than 4.0 μm with strong idler absorption by focused Gaussian beam," J. Appl. Phys. 97, 113105-113105-04 (2005).
[CrossRef]

Svirko, Y. P.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, "Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption," Appl. Phys. Lett. 73, 1610-1612 (1998).
[CrossRef]

Tang, C. L.

Tang, S. H.

H. Su, Y. Q. Qin, H. C. Guo, and S. H. Tang, "Periodically poled LiNbO3: Optical parametric oscillation at wavelengths larger than 4.0 μm with strong idler absorption by focused Gaussian beam," J. Appl. Phys. 97, 113105-113105-04 (2005).
[CrossRef]

Taniuchi, T.

Appl. Opt.

Appl. Phys. Lett.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, "Optical parametric oscillation out to 6.3 μm in periodically poled lithium niobate under strong idler absorption," Appl. Phys. Lett. 73, 1610-1612 (1998).
[CrossRef]

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mallis, "Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling," Appl. Phys. Lett. 81, 4946-4948 (2002).
[CrossRef]

T. Henningsen, M. Garbuny, and R. L. Byer, "Remote detection of CO by parametric tunable laser," Appl. Phys. Lett. 24, 242-244 (1974).
[CrossRef]

S. E. Harris, "Proposed backward wave oscillation in the infrared," Appl. Phys. Lett. 9, 114-116 (1966).
[CrossRef]

IEEE J. Quantum Electron.

Y. J. Ding and J. B. Khurgin, "Backward optical parametric oscillators and amplifiers," IEEE J. Quantum Electron. 32, 1574-1582 (1996).
[CrossRef]

J. Appl. Phys.

H. Su, Y. Q. Qin, H. C. Guo, and S. H. Tang, "Periodically poled LiNbO3: Optical parametric oscillation at wavelengths larger than 4.0 μm with strong idler absorption by focused Gaussian beam," J. Appl. Phys. 97, 113105-113105-04 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, and D. C. Hanna, "Efficient, low-threshold synchronously-pumped parametric oscillation in periodically poled lithium niobate over the 1.3 μmto5.3 μm range," Opt. Commun. 152, 55-58 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

Y. J. Ding, S. J. Lee, and J. B. Khurgin, "Transversely pump counterpropagating optical parametric oscillation and amplification," Phys. Rev. Lett. 75, 429-432 (1995).
[CrossRef] [PubMed]

C. B. Clausen, O. Bang, and Y. S. Kivshar, "Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media," Phys. Rev. Lett. 78, 4749-4752 (1997).
[CrossRef]

Semicond. Sci. Technol.

Y. Paltier, D. Mahalu, H. Shtrikman, G. Bunin, and U. Meirav, "Short period surface superlattices formed by plasma etching," Semicond. Sci. Technol. 12, 987-990 (1997).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Counterpropagating QPM configuration in the periodic domain. (b) Signal and idler wavelengths versus spatial period for the FOPO and BOPO.

Fig. 2
Fig. 2

(a) Threshold pump intensity I th for (a) BOPO and the idler absorption coefficient versus idler wavelength and (b) forward QPM optical parametric generator versus idler wavelength.

Fig. 3
Fig. 3

Electric field amplitudes of the optical parametric oscillation as a function of propagation distance.

Fig. 4
Fig. 4

Conversion efficiencies of the signal and idler waves ( η s and η i , respectively) and depletion D of the pump wave versus pump intensity.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ k = k p k s k i G 1 = 0 ,
1 Λ = n p λ p n s λ s + n i λ i ,
d A p ( x ) d x = i k A s A i ,
d A s ( x ) d x = i k A p A i * ,
d A i ( x ) d x = i k A p A s * + α i A i ( x ) 2 ,
A s = a 0 exp ( α i x 4 ) sin ( β x ) ,
A i = i a 0 * k A p * exp ( α i x 4 ) [ ( α i 4 ) sin ( β x ) + β cos ( β x ) ] ,
A s ( 0 ) = 0 , A i ( L ) = 0 .
β tan ( β L ) = α i 4 .

Metrics