Abstract

We report a theoretical study of clusters of evanescently coupled 2D whispering-gallery mode optical microcavities (termed “photonic molecules”) as chemosensing and biosensing platforms. Photonic molecules (PMs) supporting modes with narrow linewidths, wide mode spacing, and greatly enhanced sensitivity to the changes in the dielectric constant of their environment and to the presence of individual subwavelength-sized nanoparticles in the PM evanescent-field region are numerically designed. This type of optical biosensor can be fabricated in a variety of material platforms and integrated on a single chip that makes it a promising candidate for a small and robust laboratory-on-a-chip device. Possible applications of the developed methodology and the designed PM structures to near-field microscopy, single nanoemitter microcavity lasing, and cavity-controlled single-molecule fluorescence enhancement are also discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742-5747 (2001).
    [CrossRef]
  2. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Integrated optical microcavities for enhanced evanescent-wave spectroscopy," Opt. Lett. 27, 1504-1506 (2002).
    [CrossRef]
  3. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002).
    [CrossRef]
  4. C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
    [CrossRef]
  5. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification byspectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
    [CrossRef] [PubMed]
  6. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005).
    [CrossRef]
  7. H. Quan and Z. Guo, "Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors," J. Quant. Spectrosc. Radiat. Transf. 93, 231-243 (2005).
    [CrossRef]
  8. W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
    [CrossRef]
  9. S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities," Appl. Opt. 40, 570-582 (2001).
    [CrossRef]
  10. H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical microcavity laser based on the evanescent-wave-coupled gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
    [CrossRef] [PubMed]
  11. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63, 1310-1312 (1993).
    [CrossRef]
  12. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
    [CrossRef] [PubMed]
  13. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, and P. A. Knipp, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2586 (1998).
    [CrossRef]
  14. S. V. Boriskina, "Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of WG modes in symmetrical photonic molecules," Opt. Lett. 31, 338-340 (2006).
    [CrossRef] [PubMed]
  15. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, "Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes," Opt. Lett. 31, 921-923 (2006).
    [CrossRef] [PubMed]
  16. A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsP microdisks," Appl. Phys. Lett. 86, 041112 (2005).
    [CrossRef]
  17. A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, "High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers," J. Opt. Soc. Am. B 21, 121-131 (2004).
    [CrossRef]
  18. S. V. Boriskina, P. Sewell, T. M. Benson, and A. I. Nosich, "Accurate simulation of 2D optical microcavities with uniquely solvable boundary integral equations and trigonometric-Galerkin discretization," J. Opt. Soc. Am. A 21, 393-402 (2004).
    [CrossRef]
  19. M. Abramovitz and I. Stegun, Handbook of Mathematical Functions (Dover, 1970).
  20. G. Tayeb and D. Maystre, "Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A 14, 3323-3332 (1997).
    [CrossRef]
  21. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, "Spectral shift and Q change of circular and square-shaped optical microcavity modes due to periodical sidewall surface roughness," J. Opt. Soc. Am. B 21, 1792-1796 (2004).
    [CrossRef]
  22. H. Yokoyama and S. D. Brorson, "Rate equation analysis of microcavity lasers," J. Appl. Phys. 66, 4801-4805 (1989).
    [CrossRef]
  23. M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, "Enhanced fluorescent yields through cavity quantum electrodynamic effects in microdroplets," J. Opt. Soc. Am. B 11, 1297-1304 (1994).
    [CrossRef]
  24. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, "Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared," Opt. Lett. 19, 2062-2064 (1994).
    [CrossRef] [PubMed]
  25. A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
    [CrossRef]
  26. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
    [CrossRef]
  27. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004).
    [CrossRef] [PubMed]
  28. S. Gotziger, O. Benson, and V. Sandoghdar, "Influence of a sharp fiber tip on high-Q modes of a microsphere resonator," Opt. Lett. 27, 80-82 (2002).
    [CrossRef]
  29. A. Giusto, S. Savasta, and R. Saija, "Interaction of a microresonator with a nanoscatterer," J. Phys.: Conf. Ser. 6, 103-108 (2005).
    [CrossRef]
  30. M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999).
    [CrossRef]
  31. M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-controlled single-molecule fluorescence," ChemPhysChem 6, 2190-2196 (2005).
    [CrossRef] [PubMed]
  32. R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
    [CrossRef]
  33. T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
    [CrossRef]
  34. K. Petter, T. Kipp, Ch. Heyn, D. Heitmann, and C. Schuller, "Fabrication of large periodic arrays of AlGaAs microdisks by laser-interference lithography and selective etching," Appl. Phys. Lett. 81, 592-594 (2002).
    [CrossRef]
  35. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001).
    [CrossRef]
  36. M. Lohmeyer, "Mode expansion modeling of rectangular integrated optical microresonators," Opt. Quantum Electron. 34, 541-557 (2002).
    [CrossRef]

2006 (2)

2005 (6)

M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
[CrossRef] [PubMed]

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-controlled single-molecule fluorescence," ChemPhysChem 6, 2190-2196 (2005).
[CrossRef] [PubMed]

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005).
[CrossRef]

H. Quan and Z. Guo, "Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors," J. Quant. Spectrosc. Radiat. Transf. 93, 231-243 (2005).
[CrossRef]

A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsP microdisks," Appl. Phys. Lett. 86, 041112 (2005).
[CrossRef]

A. Giusto, S. Savasta, and R. Saija, "Interaction of a microresonator with a nanoscatterer," J. Phys.: Conf. Ser. 6, 103-108 (2005).
[CrossRef]

2004 (5)

2003 (4)

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification byspectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

2002 (5)

2001 (4)

2000 (1)

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical microcavity laser based on the evanescent-wave-coupled gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

1999 (1)

M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999).
[CrossRef]

1998 (1)

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, and P. A. Knipp, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2586 (1998).
[CrossRef]

1997 (2)

T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
[CrossRef]

G. Tayeb and D. Maystre, "Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A 14, 3323-3332 (1997).
[CrossRef]

1994 (2)

1993 (1)

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63, 1310-1312 (1993).
[CrossRef]

1989 (1)

H. Yokoyama and S. D. Brorson, "Rate equation analysis of microcavity lasers," J. Appl. Phys. 66, 4801-4805 (1989).
[CrossRef]

Abramovitz, M.

M. Abramovitz and I. Stegun, Handbook of Mathematical Functions (Dover, 1970).

An, K.

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical microcavity laser based on the evanescent-wave-coupled gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

Arnold, S.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification byspectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, "Enhanced fluorescent yields through cavity quantum electrodynamic effects in microdroplets," J. Opt. Soc. Am. B 11, 1297-1304 (1994).
[CrossRef]

Baba, T.

A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsP microdisks," Appl. Phys. Lett. 86, 041112 (2005).
[CrossRef]

T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
[CrossRef]

Baca, A. S.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

Backman, V.

Bailey, R. C.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

Barnes, M. D.

Bayer, M.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, and P. A. Knipp, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2586 (1998).
[CrossRef]

Benson, O.

Benson, T. M.

Blair, S.

Bleier, A. R.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

Boriskina, S. V.

Borselli, M.

Boyd, R. W.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742-5747 (2001).
[CrossRef]

Boysel, R. M.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

Braun, D.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification byspectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

Brorson, S. D.

H. Yokoyama and S. D. Brorson, "Rate equation analysis of microcavity lasers," J. Appl. Phys. 66, 4801-4805 (1989).
[CrossRef]

Buchholz, D. B.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

Burin, A. L.

Cao, H.

A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, "High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers," J. Opt. Soc. Am. B 21, 121-131 (2004).
[CrossRef]

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

Cerrina, F.

Chang, R. P. H.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Chen, Y.

Chen, Z.

Chough, Y.-T.

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical microcavity laser based on the evanescent-wave-coupled gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

DeRose, G. A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005).
[CrossRef]

Driessen, A.

Failla, A. V.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-controlled single-molecule fluorescence," ChemPhysChem 6, 2190-2196 (2005).
[CrossRef] [PubMed]

Fajardo, J. E.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

Fang, W.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

Fantini, S.

Forchel, A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, and P. A. Knipp, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2586 (1998).
[CrossRef]

Franceschini, M. A.

Fujita, M.

T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
[CrossRef]

Giusto, A.

A. Giusto, S. Savasta, and R. Saija, "Interaction of a microresonator with a nanoscatterer," J. Phys.: Conf. Ser. 6, 103-108 (2005).
[CrossRef]

Gotziger, S.

Gratton, E.

Green, W. M. J.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005).
[CrossRef]

Greve, J.

Guo, L. J.

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Guo, Z.

H. Quan and Z. Guo, "Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors," J. Quant. Spectrosc. Radiat. Transf. 93, 231-243 (2005).
[CrossRef]

Gutbrod, T.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, and P. A. Knipp, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2586 (1998).
[CrossRef]

Hancock, R. R.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

Hartschuh, A.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-controlled single-molecule fluorescence," ChemPhysChem 6, 2190-2196 (2005).
[CrossRef] [PubMed]

Heebner, J. E.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742-5747 (2001).
[CrossRef]

Heitmann, D.

K. Petter, T. Kipp, Ch. Heyn, D. Heitmann, and C. Schuller, "Fabrication of large periodic arrays of AlGaAs microdisks by laser-interference lithography and selective etching," Appl. Phys. Lett. 81, 592-594 (2002).
[CrossRef]

Heyn, Ch.

K. Petter, T. Kipp, Ch. Heyn, D. Heitmann, and C. Schuller, "Fabrication of large periodic arrays of AlGaAs microdisks by laser-interference lithography and selective etching," Appl. Phys. Lett. 81, 592-594 (2002).
[CrossRef]

Hupp, J. T.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

Ishii, S.

A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsP microdisks," Appl. Phys. Lett. 86, 041112 (2005).
[CrossRef]

Johnson, T. J.

Kelly, K. L.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

Kihara, M.

T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
[CrossRef]

Kimerling, L. C.

Kipp, T.

K. Petter, T. Kipp, Ch. Heyn, D. Heitmann, and C. Schuller, "Fabrication of large periodic arrays of AlGaAs microdisks by laser-interference lithography and selective etching," Appl. Phys. Lett. 81, 592-594 (2002).
[CrossRef]

Klunder, D. J. W.

Knipp, P. A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, and P. A. Knipp, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2586 (1998).
[CrossRef]

Krioukov, E.

Lee, K. K.

Lepeshkin, N. N.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

Levi, A. F. J.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63, 1310-1312 (1993).
[CrossRef]

Lewis, M. A.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

Libchaber, A.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification byspectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

Lim, D. R.

Logan, R. A.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63, 1310-1312 (1993).
[CrossRef]

Lohmeyer, M.

M. Lohmeyer, "Mode expansion modeling of rectangular integrated optical microresonators," Opt. Quantum Electron. 34, 541-557 (2002).
[CrossRef]

Maier, J. S.

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

Maystre, D.

McCall, S. L.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63, 1310-1312 (1993).
[CrossRef]

McFarland, A. D.

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

Meixner, A. J.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-controlled single-molecule fluorescence," ChemPhysChem 6, 2190-2196 (2005).
[CrossRef] [PubMed]

Mohideen, U.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63, 1310-1312 (1993).
[CrossRef]

Moon, H.-J.

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical microcavity laser based on the evanescent-wave-coupled gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

Nakagawa, A.

A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsP microdisks," Appl. Phys. Lett. 86, 041112 (2005).
[CrossRef]

Nosich, A. I.

Otto, C.

Painter, O.

Park, Q.-H.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

Pearton, S. J.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63, 1310-1312 (1993).
[CrossRef]

Pelton, M.

M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999).
[CrossRef]

Petter, K.

K. Petter, T. Kipp, Ch. Heyn, D. Heitmann, and C. Schuller, "Fabrication of large periodic arrays of AlGaAs microdisks by laser-interference lithography and selective etching," Appl. Phys. Lett. 81, 592-594 (2002).
[CrossRef]

Quan, H.

H. Quan and Z. Guo, "Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors," J. Quant. Spectrosc. Radiat. Transf. 93, 231-243 (2005).
[CrossRef]

Quesada, M.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

Ramsey, J. M.

Ratner, M. A.

Reinecke, T. L.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, and P. A. Knipp, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2586 (1998).
[CrossRef]

Reithmaier, J. P.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, and P. A. Knipp, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2586 (1998).
[CrossRef]

Saija, R.

A. Giusto, S. Savasta, and R. Saija, "Interaction of a microresonator with a nanoscatterer," J. Phys.: Conf. Ser. 6, 103-108 (2005).
[CrossRef]

Sakai, A.

T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
[CrossRef]

Sandoghdar, V.

Savasta, S.

A. Giusto, S. Savasta, and R. Saija, "Interaction of a microresonator with a nanoscatterer," J. Phys.: Conf. Ser. 6, 103-108 (2005).
[CrossRef]

Schatz, G. C.

A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, "High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers," J. Opt. Soc. Am. B 21, 121-131 (2004).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

Scheuer, J.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005).
[CrossRef]

Schleifenbaum, F.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-controlled single-molecule fluorescence," ChemPhysChem 6, 2190-2196 (2005).
[CrossRef] [PubMed]

Schuller, C.

K. Petter, T. Kipp, Ch. Heyn, D. Heitmann, and C. Schuller, "Fabrication of large periodic arrays of AlGaAs microdisks by laser-interference lithography and selective etching," Appl. Phys. Lett. 81, 592-594 (2002).
[CrossRef]

Schweinsberg, A.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

Sewell, P.

Shin, J.

Slusher, R. E.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63, 1310-1312 (1993).
[CrossRef]

Smotrova, E. I.

Stegun, I.

M. Abramovitz and I. Stegun, Handbook of Mathematical Functions (Dover, 1970).

Steiner, M.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-controlled single-molecule fluorescence," ChemPhysChem 6, 2190-2196 (2005).
[CrossRef] [PubMed]

Stupperich, C.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-controlled single-molecule fluorescence," ChemPhysChem 6, 2190-2196 (2005).
[CrossRef] [PubMed]

Taflove, A.

Tayeb, G.

Teraoka, I.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification byspectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

Treichler, J.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

Van Duyne, R. P.

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

Vollmer, F.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification byspectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

Walker, S. A.

Watanabe, R.

T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
[CrossRef]

Welty, R.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

Whitten, W. B.

Wicks, G. W.

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

Yamamoto, Y.

M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999).
[CrossRef]

Yariv, A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005).
[CrossRef]

Yokoyama, H.

H. Yokoyama and S. D. Brorson, "Rate equation analysis of microcavity lasers," J. Appl. Phys. 66, 4801-4805 (1989).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

K. Petter, T. Kipp, Ch. Heyn, D. Heitmann, and C. Schuller, "Fabrication of large periodic arrays of AlGaAs microdisks by laser-interference lithography and selective etching," Appl. Phys. Lett. 81, 592-594 (2002).
[CrossRef]

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004).
[CrossRef]

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63, 1310-1312 (1993).
[CrossRef]

A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsP microdisks," Appl. Phys. Lett. 86, 041112 (2005).
[CrossRef]

Biophys. J. (1)

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification byspectroscopic shift of 2 microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

ChemPhysChem (1)

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-controlled single-molecule fluorescence," ChemPhysChem 6, 2190-2196 (2005).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications, and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Baba, M. Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10μm," IEEE Photon. Technol. Lett. 9, 878-880 (1997).
[CrossRef]

J. Am. Chem. Soc. (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001).
[CrossRef]

J. Appl. Phys. (1)

H. Yokoyama and S. D. Brorson, "Rate equation analysis of microcavity lasers," J. Appl. Phys. 66, 4801-4805 (1989).
[CrossRef]

J. Mod. Opt. (1)

R. W. Boyd, J. E. Heebner, N. N. Lepeshkin, Q.-H. Park, A. Schweinsberg, G. W. Wicks, A. S. Baca, J. E. Fajardo, R. R. Hancock, M. A. Lewis, R. M. Boysel, M. Quesada, R. Welty, A. R. Bleier, J. Treichler, and R. E. Slusher, "Nanofabrication of optical structures and devices for photonics and biophotonics," J. Mod. Opt. 50, 2543-2550 (2003).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (3)

J. Phys.: Conf. Ser. (1)

A. Giusto, S. Savasta, and R. Saija, "Interaction of a microresonator with a nanoscatterer," J. Phys.: Conf. Ser. 6, 103-108 (2005).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

H. Quan and Z. Guo, "Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors," J. Quant. Spectrosc. Radiat. Transf. 93, 231-243 (2005).
[CrossRef]

Nano Lett. (1)

A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Opt. Quantum Electron. (1)

M. Lohmeyer, "Mode expansion modeling of rectangular integrated optical microresonators," Opt. Quantum Electron. 34, 541-557 (2002).
[CrossRef]

Phys. Rev. A (1)

M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, and P. A. Knipp, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2586 (1998).
[CrossRef]

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical microcavity laser based on the evanescent-wave-coupled gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

Other (1)

M. Abramovitz and I. Stegun, Handbook of Mathematical Functions (Dover, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a coupled-microdisk cluster immersed into a homogeneous dielectric medium.

Fig. 2
Fig. 2

Two possible locations of the source ( Q ) and the observation ( P ) points in the expressions for the Green’s functions; (a) both points belong to the same cavity and (b) the points belong to different cavities. The global and local coordinate systems used in the analysis are also shown.

Fig. 3
Fig. 3

Values of the quality factors and FSRs of the WG modes in a 2D circular microdisk resonator ( n eff = 2.63 , n e = 1.0 ) with resonant wavelengths around 1.55 μ m as a function of the disk radius. Note that all the modes are double degenerate owing to the disk symmetry.

Fig. 4
Fig. 4

Magnetic near-field distributions of the WG modes in the vertical cross sections of two resonators: (a) WG 4 , 1 mode in a 1.34 μ m diameter disk and (b) WG 7 , 1 mode in a 2 μ m diameter disk.

Fig. 5
Fig. 5

(a) Wavelength shifts and (b) Q-factor enhancements relative to corresponding single-cavity values of three OE supermodes of different azimuthal orders in a square PM versus distance d m , and (c) near-field intensity distribution of the WG 4 , 1 OE supermode for d m = 1.101 μ m . The disk radii are a = 0.67 , 0.9, and 1.1 μ m , respectively. The inset shows the PM geometry.

Fig. 6
Fig. 6

(a) Wavelength shift and Q-factor change of the WG 4 , 1 OE supermode in a square PSM versus distance d s and (b) near-field intensity distribution of the WG 4 , 1 OE supermode in the optimally tuned PSM configuration with d s = 2.216 μ m .

Fig. 7
Fig. 7

Comparison of (a) the wavelength shifts Δ λ = λ ( n e ) λ 0 and (b) Q factors change as a function of the refractive index of the environment for a single 2 μ m diameter microdisk operating on a WG 7 , 1 mode and for the PM and PSM operating on the symmetry-enhanced WG 4 , 1 OE supermodes.

Fig. 8
Fig. 8

Calculated shifts of the PM WG 4 , 1 OE-supermode resonant wavelength as a function of the refractive index of the sensor cladding: (a) pure water, (b) 0.5% glucose, (c) 10% glucose, (d) EtOH , and (e) 1-propanol.

Fig. 9
Fig. 9

Comparison of the wavelength shifts of (a) the symmetry-enhanced PM WG 4 , 1 OE supermode and (b) of the single-disk WG 7 , 1 mode as a function of the radius of the detected nanoparticle. Degenerate microdisk mode splitting due to the presence of the nanoparticle is also observed in (b). The insets show the nanoparticle positions relative to the microresonator structures.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

U p ( r ) = U inc ( r ) + = 1 L s { U ( r ) n [ G c ( r , r ) G e ( r , r ) ] V ( r ) [ G c ( r , r ) α e α G e ( r , r ) ] } d s ,
α e + α p 2 α p V p ( r ) = V inc ( r ) + = 1 L s { U ( r ) 2 n n [ G c ( r , r ) G e ( r , r ) ] V ( r ) n [ G c ( r , r ) α e α G e ( r , r ) ] } d s ,
U TE ( r ) = H z ( r ) , V TE ( r ) = H z ( r ) n , α = ε , α e = ε e , U TM ( r ) = E z ( r ) , V TM ( r ) = E z ( r ) n , α = μ , α e = μ e , = 1 , , L .
G p c ( r , r ) = i 4 ( m ) J m [ k p r p ( P ) ] H m ( 1 ) [ k p r p ( Q ) ] exp [ i m θ p ( Q ) ] exp [ i m θ p ( P ) ] , r p ( P ) r p ( Q ) ,
G p e ( r , r ) = i 4 ( m ) J m [ k e r p ( Q ) ] H m ( 1 ) [ k e r p ( P ) ] exp [ i m θ p ( Q ) ] exp [ i m θ p ( P ) ] , r p ( P ) r p ( Q ) .
G c ( r , r ) = i 4 ( m ) J m [ k r ( Q ) ] H m ( 1 ) [ k r ( P ) ] exp [ i m θ ( Q ) ] exp [ i m θ ( P ) ] , r ( P ) r ( Q ) ,
G e ( r , r ) = i 4 ( m ) J m [ k e r ( Q ) ] H m ( 1 ) [ k e r ( P ) ] exp [ i m θ ( Q ) ] exp [ i m θ ( P ) ] , r ( P ) r ( Q ) .
H m ( 1 ) [ k r ( P ) ] exp [ i m θ ( P ) ] = ( n ) H n m ( 1 ) ( k r p ) J n [ k r p ( P ) ] exp [ i ( m n ) θ p ] exp [ i n θ p ( P ) ] , r p ( P ) < r p ,
H m ( 1 ) [ k r ( P ) ] exp [ i m θ ( P ) ] = ( n ) J n m ( k r p ) H n ( 1 ) [ k r p ( P ) ] exp [ i ( m n ) θ p ] exp [ i n θ p ( P ) ] , r p ( P ) > r p .
a m p u m p + b m p v m p + p { ( n ) u n A m n + ( n ) v n B m n } = 0 ,
c m p u m p + d m p v m p + p { ( n ) u n C m n + ( n ) v n D m n } = 0 ,
a m p = ε p J m ( k p a p ) H m ( 1 ) ( k p a p ) ε e J m ( k e a p ) H m ( 1 ) ( k e a p ) + 4 i π k a p ,
b m p = J m ( k p a p ) H m ( 1 ) ( k p a p ) α e α p J m ( k e a p ) H m ( 1 ) ( k e a p ) ,
c m p = ε e J m ( k e a p ) H m ( 1 ) ( k e a p ) ε p J m ( k p a p ) H m ( 1 ) ( k p a p ) ,
d m p = α e α p ε e J m ( k e a p ) H m ( 1 ) ( k e a p ) ε p J m ( k p a p ) H m ( 1 ) ( k p a p ) + 2 ( α p + α e ) i π α p k a p ,
A m n = [ ε J n ( k a ) J m ( k a p ) H m n ( 1 ) ( k r p ) ε e J n ( k e a ) J m ( k e a p ) H m n ( 1 ) ( k e r p ) ] e i ( n m ) θ p ;
B m n = [ J n ( k a ) J m ( k a p ) H m n ( 1 ) ( k r p ) α e α J n ( k e a ) J m ( k e a p ) H m n ( 1 ) ( k e r p ) ] e i ( n m ) θ p ,
C m n = [ ε e J n ( k e a ) J m ( k e a p ) H m n ( 1 ) ( k e r p ) ε J n ( k a ) J m ( k a p ) H m n ( 1 ) ( k r p l ) ] e i ( n m ) θ p ,
D m n = [ α e α ε e J n ( k e a ) J m ( k e a p ) H m n ( 1 ) ( k e r p ) ε J n ( k a ) J m ( k a p ) H m n ( 1 ) ( k r p ) ] e i ( n m ) θ p .

Metrics