Abstract

A Raman gain spectral profile has been measured in a phosphosilicate fiber at high pump and Stokes (signal) wave powers by a coherent anti-Stokes Raman scattering (CARS) technique. It has been shown that the profile saturates homogeneously. The main saturation mechanism is proved to be the pump depletion; i.e., the Raman gain coefficient gR does not depend on the pump and signal wave power of several watts. The possible influence of stimulated Brillouin scattering and four-wave mixing is discussed. In addition, a transient regime of the CARS signal has been experimentally observed and theoretically explained.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Namiki and Y. Emory, "Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes," IEEE J. Sel. Top. Quantum Electron. 7, 3-16 (2001).
    [CrossRef]
  2. M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. G. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13, 1286-1288 (2001).
    [CrossRef]
  3. M. Bolshtyansky, "Spectral hole burning in erbium-doped fiber amplifiers," J. Lightwave Technol. 21, 1032-1038 (2003).
    [CrossRef]
  4. D. G. Dugg, F. Heismann, N. Litchinitser, M. F. Arend, E. Golovchenko, and M. Nissov, "Impact of spectral hole burning on long haul WDM transmission system performance," in Optical Amplifiers and Their Applications, A.Mecozzi, M.Shimizu, and J.Zyskind, eds., Vol. 44 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper OMD2.
  5. G. E. Walrafen and P. N. Krishnan, "Model analysis of the Raman spectrum from fused silica optical fibers," Appl. Opt. 21, 359-360 (1982).
    [CrossRef] [PubMed]
  6. D. Hollenbeck and C. D. Cantrell, "Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function," J. Opt. Soc. Am. B 19, 2886-2892 (2002).
    [CrossRef]
  7. Y. Takushima and K. Kikuchi, "Spectral gain hole burning and modulation instability in a Brillouin fiber amplifier," Opt. Lett. 20, 34-36 (1995).
    [CrossRef] [PubMed]
  8. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997), Chap. 8.
  9. C. J. S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, "Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 μm," Electron. Lett. 37, 825-826 (2001).
    [CrossRef]
  10. C.-S. Kim, R. M. Sova, and J. U. Kang, "Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter," Opt. Commun. 218, 291-295 (2003).
    [CrossRef]
  11. P.-C. Peng, H.-Y. Tseng, and S. Chi, "Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme," IEEE Photon. Technol. Lett. 16, 575-577 (2004).
    [CrossRef]
  12. Y.-G. Han, S. B. Lee, D. S. Moon, and Y. Chung, "Investigation of a multiwavelength Raman fiber laser based on few-mode fiber Bragg gratings," Opt. Lett. 30, 2200-2202 (2005).
    [CrossRef] [PubMed]
  13. S. A. Babin, D. V. Churkin, and E. V. Podivilov, "Intensity interactions in cascades of a two-stage Raman fiber laser," Opt. Commun. 226, 329-335 (2003).
    [CrossRef]
  14. Y. Wang and H. Po, "Impact of cavity losses on cw Raman fiber lasers," Opt. Eng. 42, 2872-2879 (2003).
    [CrossRef]
  15. S. A. Babin, D. V. Churkin, E. V. Podivilov, and A. S. Kurkov, "Spectral broadening and intensity interactions in cascades of a Raman fiber laser: analytical model and experimental test," in Optical Fiber Communication Conference, Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper WB6.
  16. P. Suret and S. Randoux, "Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models," Opt. Commun. 237, 201-212 (2004).
    [CrossRef]
  17. S. A. Babin, D. V. Churkin, S. I. Kablukov, and E. V. Podivilov, "Raman gain saturation at high pump and Stokes powers," Opt. Express 13, 6079-6084 (2005).
    [CrossRef] [PubMed]
  18. K. Suzuki and M. Nakazawa, "Raman amplification in a P2O5-doped optical fiber," Opt. Lett. 13, 666-668 (1988).
    [CrossRef] [PubMed]
  19. A. R. Chraplyvy, J. Stone, and C. A. Burrus, "Optical gain exceeding 35 dB at 1.56 μm due to stimulated Raman scattering by molecular D2 in a solid silica optical fiber," Opt. Lett. 8, 415-417 (1983).
    [CrossRef] [PubMed]
  20. N. R. Newbury, "Raman gain: pump-wavelength dependence in single-mode fiber," Opt. Lett. 27, 1232-1234 (2002).
    [CrossRef]
  21. E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
    [CrossRef]
  22. J. Auyeung and A. Yariv, "Theory of cw Raman oscillation in optical fibers," J. Opt. Soc. Am. 69, 803-807 (1979).
    [CrossRef]
  23. S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, "Experimental and numerical study of the switching dynamics of Raman fiber lasers," Appl. Phys. B 80, 177-183 (2005).
    [CrossRef]
  24. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Stimulated Brillouin scattering of frequency stabilized radiation in a fiber," in ICONO: Nonlinear Optical Phenomena, K.Drabovich, V.Makarov, and Y.-R.Shen, eds., Proc. SPIE 6259, 243-250 (2006).
  25. Q. Wang, Y. Wang, W. Zhang, X. Feng, X. Liu, and B. Zhou, "Inhomogeneous loss mechanism in multiwavelength fiber Raman ring lasers," Opt. Lett. 30, 952-954 (2005).
    [CrossRef] [PubMed]
  26. N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation," Opt. Commun. 176, 219-222 (2000).
    [CrossRef]

2005 (4)

2004 (2)

P. Suret and S. Randoux, "Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models," Opt. Commun. 237, 201-212 (2004).
[CrossRef]

P.-C. Peng, H.-Y. Tseng, and S. Chi, "Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme," IEEE Photon. Technol. Lett. 16, 575-577 (2004).
[CrossRef]

2003 (4)

S. A. Babin, D. V. Churkin, and E. V. Podivilov, "Intensity interactions in cascades of a two-stage Raman fiber laser," Opt. Commun. 226, 329-335 (2003).
[CrossRef]

Y. Wang and H. Po, "Impact of cavity losses on cw Raman fiber lasers," Opt. Eng. 42, 2872-2879 (2003).
[CrossRef]

C.-S. Kim, R. M. Sova, and J. U. Kang, "Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter," Opt. Commun. 218, 291-295 (2003).
[CrossRef]

M. Bolshtyansky, "Spectral hole burning in erbium-doped fiber amplifiers," J. Lightwave Technol. 21, 1032-1038 (2003).
[CrossRef]

2002 (2)

2001 (3)

S. Namiki and Y. Emory, "Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes," IEEE J. Sel. Top. Quantum Electron. 7, 3-16 (2001).
[CrossRef]

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. G. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13, 1286-1288 (2001).
[CrossRef]

C. J. S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, "Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 μm," Electron. Lett. 37, 825-826 (2001).
[CrossRef]

2000 (1)

N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation," Opt. Commun. 176, 219-222 (2000).
[CrossRef]

1997 (1)

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

1995 (1)

1988 (1)

1983 (1)

1982 (1)

1979 (1)

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997), Chap. 8.

Arend, M. F.

D. G. Dugg, F. Heismann, N. Litchinitser, M. F. Arend, E. Golovchenko, and M. Nissov, "Impact of spectral hole burning on long haul WDM transmission system performance," in Optical Amplifiers and Their Applications, A.Mecozzi, M.Shimizu, and J.Zyskind, eds., Vol. 44 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper OMD2.

Auyeung, J.

Babin, S. A.

S. A. Babin, D. V. Churkin, S. I. Kablukov, and E. V. Podivilov, "Raman gain saturation at high pump and Stokes powers," Opt. Express 13, 6079-6084 (2005).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, "Intensity interactions in cascades of a two-stage Raman fiber laser," Opt. Commun. 226, 329-335 (2003).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Stimulated Brillouin scattering of frequency stabilized radiation in a fiber," in ICONO: Nonlinear Optical Phenomena, K.Drabovich, V.Makarov, and Y.-R.Shen, eds., Proc. SPIE 6259, 243-250 (2006).

S. A. Babin, D. V. Churkin, E. V. Podivilov, and A. S. Kurkov, "Spectral broadening and intensity interactions in cascades of a Raman fiber laser: analytical model and experimental test," in Optical Fiber Communication Conference, Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper WB6.

Belov, A. V.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

Bolshtyansky, M.

Bouteiller, J.-C.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. G. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13, 1286-1288 (2001).
[CrossRef]

Brinkmeyer, E.

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, "Experimental and numerical study of the switching dynamics of Raman fiber lasers," Appl. Phys. B 80, 177-183 (2005).
[CrossRef]

Bubnov, M. M.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

Bufetov, I. A.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

Burrus, C. A.

Cantrell, C. D.

Chestnut, D. A.

C. J. S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, "Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 μm," Electron. Lett. 37, 825-826 (2001).
[CrossRef]

Chi, S.

P.-C. Peng, H.-Y. Tseng, and S. Chi, "Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme," IEEE Photon. Technol. Lett. 16, 575-577 (2004).
[CrossRef]

Chraplyvy, A. R.

Chung, Y.

Churkin, D. V.

S. A. Babin, D. V. Churkin, S. I. Kablukov, and E. V. Podivilov, "Raman gain saturation at high pump and Stokes powers," Opt. Express 13, 6079-6084 (2005).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, "Intensity interactions in cascades of a two-stage Raman fiber laser," Opt. Commun. 226, 329-335 (2003).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Stimulated Brillouin scattering of frequency stabilized radiation in a fiber," in ICONO: Nonlinear Optical Phenomena, K.Drabovich, V.Makarov, and Y.-R.Shen, eds., Proc. SPIE 6259, 243-250 (2006).

S. A. Babin, D. V. Churkin, E. V. Podivilov, and A. S. Kurkov, "Spectral broadening and intensity interactions in cascades of a Raman fiber laser: analytical model and experimental test," in Optical Fiber Communication Conference, Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper WB6.

Cierullies, S.

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, "Experimental and numerical study of the switching dynamics of Raman fiber lasers," Appl. Phys. B 80, 177-183 (2005).
[CrossRef]

de Matos, C. J. S.

C. J. S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, "Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 μm," Electron. Lett. 37, 825-826 (2001).
[CrossRef]

Dianov, E. M.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

Dugg, D. G.

D. G. Dugg, F. Heismann, N. Litchinitser, M. F. Arend, E. Golovchenko, and M. Nissov, "Impact of spectral hole burning on long haul WDM transmission system performance," in Optical Amplifiers and Their Applications, A.Mecozzi, M.Shimizu, and J.Zyskind, eds., Vol. 44 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper OMD2.

Eggleton, B. G.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. G. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13, 1286-1288 (2001).
[CrossRef]

Emory, Y.

S. Namiki and Y. Emory, "Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes," IEEE J. Sel. Top. Quantum Electron. 7, 3-16 (2001).
[CrossRef]

Feder, K.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. G. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13, 1286-1288 (2001).
[CrossRef]

Feng, X.

Golovchenko, E.

D. G. Dugg, F. Heismann, N. Litchinitser, M. F. Arend, E. Golovchenko, and M. Nissov, "Impact of spectral hole burning on long haul WDM transmission system performance," in Optical Amplifiers and Their Applications, A.Mecozzi, M.Shimizu, and J.Zyskind, eds., Vol. 44 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper OMD2.

Grekov, M. V.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

Han, Y.-G.

Headley, C.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. G. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13, 1286-1288 (2001).
[CrossRef]

Heismann, F.

D. G. Dugg, F. Heismann, N. Litchinitser, M. F. Arend, E. Golovchenko, and M. Nissov, "Impact of spectral hole burning on long haul WDM transmission system performance," in Optical Amplifiers and Their Applications, A.Mecozzi, M.Shimizu, and J.Zyskind, eds., Vol. 44 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper OMD2.

Hollenbeck, D.

Horn, C.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. G. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13, 1286-1288 (2001).
[CrossRef]

Ismagulov, A. E.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Stimulated Brillouin scattering of frequency stabilized radiation in a fiber," in ICONO: Nonlinear Optical Phenomena, K.Drabovich, V.Makarov, and Y.-R.Shen, eds., Proc. SPIE 6259, 243-250 (2006).

Kablukov, S. I.

S. A. Babin, D. V. Churkin, S. I. Kablukov, and E. V. Podivilov, "Raman gain saturation at high pump and Stokes powers," Opt. Express 13, 6079-6084 (2005).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Stimulated Brillouin scattering of frequency stabilized radiation in a fiber," in ICONO: Nonlinear Optical Phenomena, K.Drabovich, V.Makarov, and Y.-R.Shen, eds., Proc. SPIE 6259, 243-250 (2006).

Kang, J. U.

C.-S. Kim, R. M. Sova, and J. U. Kang, "Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter," Opt. Commun. 218, 291-295 (2003).
[CrossRef]

Kikuchi, K.

Kim, C.-S.

C.-S. Kim, R. M. Sova, and J. U. Kang, "Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter," Opt. Commun. 218, 291-295 (2003).
[CrossRef]

Kim, N. S.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation," Opt. Commun. 176, 219-222 (2000).
[CrossRef]

Koch, F.

C. J. S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, "Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 μm," Electron. Lett. 37, 825-826 (2001).
[CrossRef]

Koltashev, V. V.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

Krause, M.

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, "Experimental and numerical study of the switching dynamics of Raman fiber lasers," Appl. Phys. B 80, 177-183 (2005).
[CrossRef]

Krishnan, P. N.

Kurkov, A. S.

S. A. Babin, D. V. Churkin, E. V. Podivilov, and A. S. Kurkov, "Spectral broadening and intensity interactions in cascades of a Raman fiber laser: analytical model and experimental test," in Optical Fiber Communication Conference, Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper WB6.

Lee, S. B.

Li, C.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation," Opt. Commun. 176, 219-222 (2000).
[CrossRef]

Litchinitser, N.

D. G. Dugg, F. Heismann, N. Litchinitser, M. F. Arend, E. Golovchenko, and M. Nissov, "Impact of spectral hole burning on long haul WDM transmission system performance," in Optical Amplifiers and Their Applications, A.Mecozzi, M.Shimizu, and J.Zyskind, eds., Vol. 44 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper OMD2.

Liu, X.

Medvedkov, O. I.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

Mermelstein, M. D.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. G. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13, 1286-1288 (2001).
[CrossRef]

Moon, D. S.

Nakazawa, M.

Namiki, S.

S. Namiki and Y. Emory, "Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes," IEEE J. Sel. Top. Quantum Electron. 7, 3-16 (2001).
[CrossRef]

Newbury, N. R.

Nissov, M.

D. G. Dugg, F. Heismann, N. Litchinitser, M. F. Arend, E. Golovchenko, and M. Nissov, "Impact of spectral hole burning on long haul WDM transmission system performance," in Optical Amplifiers and Their Applications, A.Mecozzi, M.Shimizu, and J.Zyskind, eds., Vol. 44 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper OMD2.

Peng, P.-C.

P.-C. Peng, H.-Y. Tseng, and S. Chi, "Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme," IEEE Photon. Technol. Lett. 16, 575-577 (2004).
[CrossRef]

Plotnichenko, V. G.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

Po, H.

Y. Wang and H. Po, "Impact of cavity losses on cw Raman fiber lasers," Opt. Eng. 42, 2872-2879 (2003).
[CrossRef]

Podivilov, E. V.

S. A. Babin, D. V. Churkin, S. I. Kablukov, and E. V. Podivilov, "Raman gain saturation at high pump and Stokes powers," Opt. Express 13, 6079-6084 (2005).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, "Intensity interactions in cascades of a two-stage Raman fiber laser," Opt. Commun. 226, 329-335 (2003).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Stimulated Brillouin scattering of frequency stabilized radiation in a fiber," in ICONO: Nonlinear Optical Phenomena, K.Drabovich, V.Makarov, and Y.-R.Shen, eds., Proc. SPIE 6259, 243-250 (2006).

S. A. Babin, D. V. Churkin, E. V. Podivilov, and A. S. Kurkov, "Spectral broadening and intensity interactions in cascades of a Raman fiber laser: analytical model and experimental test," in Optical Fiber Communication Conference, Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper WB6.

Prabhu, M.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation," Opt. Commun. 176, 219-222 (2000).
[CrossRef]

Prokhorov, A. M.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

Randoux, S.

P. Suret and S. Randoux, "Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models," Opt. Commun. 237, 201-212 (2004).
[CrossRef]

Reeves-Hall, P. C.

C. J. S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, "Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 μm," Electron. Lett. 37, 825-826 (2001).
[CrossRef]

Renner, H.

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, "Experimental and numerical study of the switching dynamics of Raman fiber lasers," Appl. Phys. B 80, 177-183 (2005).
[CrossRef]

Semjonov, S. L.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

Song, J.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation," Opt. Commun. 176, 219-222 (2000).
[CrossRef]

Sova, R. M.

C.-S. Kim, R. M. Sova, and J. U. Kang, "Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter," Opt. Commun. 218, 291-295 (2003).
[CrossRef]

Steinvurzel, P.

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. G. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13, 1286-1288 (2001).
[CrossRef]

Stone, J.

Suret, P.

P. Suret and S. Randoux, "Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models," Opt. Commun. 237, 201-212 (2004).
[CrossRef]

Suzuki, K.

Takushima, Y.

Taylor, J. R.

C. J. S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, "Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 μm," Electron. Lett. 37, 825-826 (2001).
[CrossRef]

Tseng, H.-Y.

P.-C. Peng, H.-Y. Tseng, and S. Chi, "Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme," IEEE Photon. Technol. Lett. 16, 575-577 (2004).
[CrossRef]

Ueda, K.-I.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation," Opt. Commun. 176, 219-222 (2000).
[CrossRef]

Vasiliev, S. A.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

Walrafen, G. E.

Wang, Q.

Wang, Y.

Yariv, A.

Zhang, W.

Zhou, B.

Appl. Opt. (1)

Appl. Phys. B (1)

S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, "Experimental and numerical study of the switching dynamics of Raman fiber lasers," Appl. Phys. B 80, 177-183 (2005).
[CrossRef]

Electron. Lett. (2)

C. J. S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, "Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 μm," Electron. Lett. 37, 825-826 (2001).
[CrossRef]

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Namiki and Y. Emory, "Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes," IEEE J. Sel. Top. Quantum Electron. 7, 3-16 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. G. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13, 1286-1288 (2001).
[CrossRef]

P.-C. Peng, H.-Y. Tseng, and S. Chi, "Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme," IEEE Photon. Technol. Lett. 16, 575-577 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (4)

S. A. Babin, D. V. Churkin, and E. V. Podivilov, "Intensity interactions in cascades of a two-stage Raman fiber laser," Opt. Commun. 226, 329-335 (2003).
[CrossRef]

P. Suret and S. Randoux, "Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models," Opt. Commun. 237, 201-212 (2004).
[CrossRef]

C.-S. Kim, R. M. Sova, and J. U. Kang, "Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter," Opt. Commun. 218, 291-295 (2003).
[CrossRef]

N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation," Opt. Commun. 176, 219-222 (2000).
[CrossRef]

Opt. Eng. (1)

Y. Wang and H. Po, "Impact of cavity losses on cw Raman fiber lasers," Opt. Eng. 42, 2872-2879 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Other (4)

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Stimulated Brillouin scattering of frequency stabilized radiation in a fiber," in ICONO: Nonlinear Optical Phenomena, K.Drabovich, V.Makarov, and Y.-R.Shen, eds., Proc. SPIE 6259, 243-250 (2006).

S. A. Babin, D. V. Churkin, E. V. Podivilov, and A. S. Kurkov, "Spectral broadening and intensity interactions in cascades of a Raman fiber laser: analytical model and experimental test," in Optical Fiber Communication Conference, Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper WB6.

D. G. Dugg, F. Heismann, N. Litchinitser, M. F. Arend, E. Golovchenko, and M. Nissov, "Impact of spectral hole burning on long haul WDM transmission system performance," in Optical Amplifiers and Their Applications, A.Mecozzi, M.Shimizu, and J.Zyskind, eds., Vol. 44 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper OMD2.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

CARS scheme: ω p , ω s , and ω as are pump, Stokes, and anti-Stokes frequencies; Δ ω = ω p ω s = ω as ω p .

Fig. 2
Fig. 2

Experimental setup. Ti:Sa, Ti:sapphire laser; HR, highly reflective, P.D, photodiode; YDFL, ytterbium-doped fiber laser; LD, laser diode; WDM, wavelength division multiplexer.

Fig. 3
Fig. 3

Probe field output power in the presence of the Stokes wave with power P s = 0.25 W (thick curve) and in the absence of it (thin curve). YDFL power is P 0 = 0.5 W .

Fig. 4
Fig. 4

Raman gain g s spectral profile at pump power P 0 = 2 W : triangles—with a high-power Stokes wave, P s = 2.5 W ; stars—without a Stokes wave, P s = 0 W .

Fig. 5
Fig. 5

Raman gain g s spectral profile (attributed to P 2 0 5 peak) at different pump powers P 0 and intracavity Stokes wave powers P s : triangles— P 0 = 0.25 W ; P s = 0 W ; circles— P 0 = 0.5 W , P s = 0.25 W ; stars— P 0 = 1 W , P s = 1 W ; squares— P 0 = 2 W , P s = 2.5 W .

Fig. 6
Fig. 6

Intracavity Stokes wave power P s versus input pump power P 0 .

Fig. 7
Fig. 7

Integral Raman gain g s L measured in the presence (squares) and in the absence (stars) of the Stokes wave; solid and dashed curves are the results of calculation from Eq. (6).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

g s = g R P p ¯ , P p ¯ = 1 L 0 L P p ( P s , z ) d z ,
g s L = g as L A = 1 A ln ( P as on P as off ) .
± d P p ± d z = ( α p + λ s λ p g R P s ) P p ± ,
d P as d z = ( α as + A g R P p ) P as ,
P p + ( z ) = P p + ( 0 ) exp [ ( α p + λ s λ p g R P s ) z ] ,
P p ( z ) = P p ( L ) exp [ ( α p + λ s λ p g R P s ) ( z L ) ] .
P p ¯ = P 0 1 exp [ ( α p + λ s λ p g R P s ) 2 L ] ( α p + λ s λ p g R P s ) L .
δ = α as L + A g R P 0 1 exp ( α p 2 L ) α p .
τ T ln ( P s P sp ) 2 ( g R P 0 L α s L γ s ) .

Metrics