Abstract

Ultrashort pulse propagation in a polarization-maintaining microstructured fiber (with 1μm core diameter and 1.1m length) is investigated experimentally and theoretically. For an 80MHz train of 130fs pulses with average powers up to 13.8mW launched into the lowest transverse mode of the fiber, the output spectra consist of discrete, multiple solitons that shift continuously to lower energies. The number of solitons and the amount that they shift both increase with the launched power. All of the data are quantitatively consistent with solutions of the nonlinear Schrödinger equation, but only when the Raman nonlinearity is treated without approximation, and self-steepening is included. These results remove any ambiguity as to the nature of these multiple solitons; they arise owing to the breakup of high-order solitons in the presence of nonlinear processes beyond self-phase modulation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription