Abstract

The photonic band structures of two-dimensional square lattice photonic crystals made of anisotropic materials with one of the principal axes oriented along the extension direction of cylinders are studied. The band structure of the photonic crystal can be substantially engineered to achieve large bandgaps by reorienting the other two principal axes of the anisotropy media in the periodic plane of the photonic crystal. In particular, it is shown that large full bandgap for H polarization can be created for a photonic crystal with circular holes in an anisotropic matrix medium. For pillar-type photonic crystals, we show that large partial bandgaps for H polarization can be created in half of the irreducible Brillouin zone. With the use of anisotropic materials and the flexibility of arranging the principal axes, the requirement on the filling ratio, refractive index and anisotropy to achieve the largest bandgap is greatly alleviated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals Molding the Flow of Light (Princeton U. Press, 1995), pp. 94-100.
  4. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001), pp. 14, 116-121, 201-205.
  5. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  6. T. Sondergaard and K. H. Dridi, "Energy flow in photonic crystal waveguides," Phys. Rev. B 61, 15688-15696 (2000).
    [CrossRef]
  7. B. D'Urso, O. Painter, J. O'Brien, T. Tombrello, A. Yariv, and A. Scherer, "Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities," J. Opt. Soc. Am. B 15, 1155-1159 (1998).
    [CrossRef]
  8. R. W. Ziolkowski and M. Tanaka, "FDTD analysis of PBG waveguides, power splitters and switches," Opt. Quantum Electron. 31, 843-855 (1999).
    [CrossRef]
  9. E. Centeno, B. Guizal, and D. Felbacq, "Multiplexing and demultiplexing with photonic crystals," J. Opt. A 1, L10-L13 (1999).
    [CrossRef]
  10. J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, "Enhanced second-harmonic generation from planar photonic crystals," Opt. Lett. 28, 2500-2502 (2003).
    [CrossRef] [PubMed]
  11. T. Baba, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
    [CrossRef]
  12. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
    [CrossRef]
  13. Z.-Y. Li, J. Wang, and B.-Y. Gu, "Creation of partial bandgaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
    [CrossRef]
  14. I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
    [CrossRef]
  15. Z.-Y. Li, J. Wang, and B.-Y. Gu, "Large absolute bandgap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998).
    [CrossRef]
  16. C. M. Chang and H. P. D. Shieh, "Simple formulas for calculating wave propagation and splitting in anisotropic media," Jpn. J. Appl. Phys. Part 1 40, 6391-6395 (2001).
    [CrossRef]
  17. A. Yariv and P. Yeh, Optical Wave in Crystals (Wiley, 1996), pp. 69-80, 85.
  18. K. Busch and S. John, "Photonic bandgap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
    [CrossRef]
  19. K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
    [CrossRef] [PubMed]
  20. R. Johannes and W. Haas, "Temperature dependence of the refractive index nc in SbSI through the ferroelectric-paraelectric transition," Appl. Opt. 6, 1059-1061 (1967).
    [CrossRef] [PubMed]
  21. A. Mansingh and T. Sudersena Rao, "Growth and characterization of flash-evaporated ferroelectric antimony sulphoiodide thin films," J. Appl. Phys. 58, 3530-3535 (1985).
    [CrossRef]
  22. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. Part 1 43, 7634-7638 (2004).
    [CrossRef]
  23. F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
    [CrossRef]

2004 (1)

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. Part 1 43, 7634-7638 (2004).
[CrossRef]

2003 (1)

2002 (1)

T. Baba, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

2001 (1)

C. M. Chang and H. P. D. Shieh, "Simple formulas for calculating wave propagation and splitting in anisotropic media," Jpn. J. Appl. Phys. Part 1 40, 6391-6395 (2001).
[CrossRef]

2000 (2)

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

T. Sondergaard and K. H. Dridi, "Energy flow in photonic crystal waveguides," Phys. Rev. B 61, 15688-15696 (2000).
[CrossRef]

1999 (2)

R. W. Ziolkowski and M. Tanaka, "FDTD analysis of PBG waveguides, power splitters and switches," Opt. Quantum Electron. 31, 843-855 (1999).
[CrossRef]

E. Centeno, B. Guizal, and D. Felbacq, "Multiplexing and demultiplexing with photonic crystals," J. Opt. A 1, L10-L13 (1999).
[CrossRef]

1998 (4)

Z.-Y. Li, J. Wang, and B.-Y. Gu, "Large absolute bandgap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998).
[CrossRef]

K. Busch and S. John, "Photonic bandgap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
[CrossRef]

B. D'Urso, O. Painter, J. O'Brien, T. Tombrello, A. Yariv, and A. Scherer, "Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities," J. Opt. Soc. Am. B 15, 1155-1159 (1998).
[CrossRef]

Z.-Y. Li, J. Wang, and B.-Y. Gu, "Creation of partial bandgaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[CrossRef]

1996 (2)

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

1993 (1)

I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
[CrossRef]

1990 (1)

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

1987 (2)

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

1985 (1)

A. Mansingh and T. Sudersena Rao, "Growth and characterization of flash-evaporated ferroelectric antimony sulphoiodide thin films," J. Appl. Phys. 58, 3530-3535 (1985).
[CrossRef]

1967 (1)

Atkin, D. M.

Baba, T.

T. Baba, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

Birks, T. A.

Birner, A.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Bosshard, Ch.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Busch, K.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

K. Busch and S. John, "Photonic bandgap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
[CrossRef]

Centeno, E.

E. Centeno, B. Guizal, and D. Felbacq, "Multiplexing and demultiplexing with photonic crystals," J. Opt. A 1, L10-L13 (1999).
[CrossRef]

Chan, C. T.

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Chang, C. M.

C. M. Chang and H. P. D. Shieh, "Simple formulas for calculating wave propagation and splitting in anisotropic media," Jpn. J. Appl. Phys. Part 1 40, 6391-6395 (2001).
[CrossRef]

Cowan, A. R.

Dridi, K. H.

T. Sondergaard and K. H. Dridi, "Energy flow in photonic crystal waveguides," Phys. Rev. B 61, 15688-15696 (2000).
[CrossRef]

D'Urso, B.

Felbacq, D.

E. Centeno, B. Guizal, and D. Felbacq, "Multiplexing and demultiplexing with photonic crystals," J. Opt. A 1, L10-L13 (1999).
[CrossRef]

Follonier, S.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Gauza, S.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. Part 1 43, 7634-7638 (2004).
[CrossRef]

Gosele, U.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Gu, B.-Y.

Z.-Y. Li, J. Wang, and B.-Y. Gu, "Large absolute bandgap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998).
[CrossRef]

Z.-Y. Li, J. Wang, and B.-Y. Gu, "Creation of partial bandgaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[CrossRef]

Guizal, B.

E. Centeno, B. Guizal, and D. Felbacq, "Multiplexing and demultiplexing with photonic crystals," J. Opt. A 1, L10-L13 (1999).
[CrossRef]

Günter, P.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Haas, W.

Ho, K.-M.

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Hsu, C. S.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. Part 1 43, 7634-7638 (2004).
[CrossRef]

Janarthanan, N.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. Part 1 43, 7634-7638 (2004).
[CrossRef]

Jiang, W.

Joannopoulus, J. D.

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals Molding the Flow of Light (Princeton U. Press, 1995), pp. 94-100.

Johannes, R.

John, S.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

K. Busch and S. John, "Photonic bandgap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
[CrossRef]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Knight, J. C.

Knöpfle, G.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Lehmann, V.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Leonard, S. W.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Li, Z.-Y.

Z.-Y. Li, J. Wang, and B.-Y. Gu, "Creation of partial bandgaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[CrossRef]

Z.-Y. Li, J. Wang, and B.-Y. Gu, "Large absolute bandgap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998).
[CrossRef]

Mansingh, A.

A. Mansingh and T. Sudersena Rao, "Growth and characterization of flash-evaporated ferroelectric antimony sulphoiodide thin films," J. Appl. Phys. 58, 3530-3535 (1985).
[CrossRef]

Meade, R. D.

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals Molding the Flow of Light (Princeton U. Press, 1995), pp. 94-100.

Mondia, J. P.

J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, "Enhanced second-harmonic generation from planar photonic crystals," Opt. Lett. 28, 2500-2502 (2003).
[CrossRef] [PubMed]

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

O'Brien, J.

Painter, O.

Pan, F.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Russell, P. St. J.

Sakoda, K.

K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001), pp. 14, 116-121, 201-205.

Scherer, A.

Shieh, H. P. D.

C. M. Chang and H. P. D. Shieh, "Simple formulas for calculating wave propagation and splitting in anisotropic media," Jpn. J. Appl. Phys. Part 1 40, 6391-6395 (2001).
[CrossRef]

Sondergaard, T.

T. Sondergaard and K. H. Dridi, "Energy flow in photonic crystal waveguides," Phys. Rev. B 61, 15688-15696 (2000).
[CrossRef]

Soukoulis, C. M.

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Spreiter, R.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Stroud, D.

I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
[CrossRef]

Sudersena Rao, T.

A. Mansingh and T. Sudersena Rao, "Growth and characterization of flash-evaporated ferroelectric antimony sulphoiodide thin films," J. Appl. Phys. 58, 3530-3535 (1985).
[CrossRef]

Tanaka, M.

R. W. Ziolkowski and M. Tanaka, "FDTD analysis of PBG waveguides, power splitters and switches," Opt. Quantum Electron. 31, 843-855 (1999).
[CrossRef]

Toader, O.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Tombrello, T.

van Driel, H. M.

J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, "Enhanced second-harmonic generation from planar photonic crystals," Opt. Lett. 28, 2500-2502 (2003).
[CrossRef] [PubMed]

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Wang, J.

Z.-Y. Li, J. Wang, and B.-Y. Gu, "Creation of partial bandgaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[CrossRef]

Z.-Y. Li, J. Wang, and B.-Y. Gu, "Large absolute bandgap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998).
[CrossRef]

Wen, C. H.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. Part 1 43, 7634-7638 (2004).
[CrossRef]

Winn, J. N.

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals Molding the Flow of Light (Princeton U. Press, 1995), pp. 94-100.

Wong, M. S.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Wu, S. T.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. Part 1 43, 7634-7638 (2004).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yariv, A.

Yeh, P.

A. Yariv and P. Yeh, Optical Wave in Crystals (Wiley, 1996), pp. 69-80, 85.

Young, J. F.

Zabel, I. H. H.

I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
[CrossRef]

Ziolkowski, R. W.

R. W. Ziolkowski and M. Tanaka, "FDTD analysis of PBG waveguides, power splitters and switches," Opt. Quantum Electron. 31, 843-855 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Baba, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

J. Appl. Phys. (1)

A. Mansingh and T. Sudersena Rao, "Growth and characterization of flash-evaporated ferroelectric antimony sulphoiodide thin films," J. Appl. Phys. 58, 3530-3535 (1985).
[CrossRef]

J. Opt. A (1)

E. Centeno, B. Guizal, and D. Felbacq, "Multiplexing and demultiplexing with photonic crystals," J. Opt. A 1, L10-L13 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. Part 1 (2)

C. M. Chang and H. P. D. Shieh, "Simple formulas for calculating wave propagation and splitting in anisotropic media," Jpn. J. Appl. Phys. Part 1 40, 6391-6395 (2001).
[CrossRef]

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. Part 1 43, 7634-7638 (2004).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

R. W. Ziolkowski and M. Tanaka, "FDTD analysis of PBG waveguides, power splitters and switches," Opt. Quantum Electron. 31, 843-855 (1999).
[CrossRef]

Phys. Rev. B (4)

T. Sondergaard and K. H. Dridi, "Energy flow in photonic crystal waveguides," Phys. Rev. B 61, 15688-15696 (2000).
[CrossRef]

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Z.-Y. Li, J. Wang, and B.-Y. Gu, "Creation of partial bandgaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[CrossRef]

I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
[CrossRef]

Phys. Rev. E (1)

K. Busch and S. John, "Photonic bandgap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
[CrossRef]

Phys. Rev. Lett. (4)

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Z.-Y. Li, J. Wang, and B.-Y. Gu, "Large absolute bandgap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998).
[CrossRef]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Other (3)

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals Molding the Flow of Light (Princeton U. Press, 1995), pp. 94-100.

K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001), pp. 14, 116-121, 201-205.

A. Yariv and P. Yeh, Optical Wave in Crystals (Wiley, 1996), pp. 69-80, 85.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) First BZ of a square lattice and the coordinate system. Principal axes, x and y ; PC axes, x and y. (b) Band structure of H polarization in Γ - X - M - Γ region for a PC with isotropic pillars of refractive index 3.8 in air background and with f = 0.5 .

Fig. 2
Fig. 2

(a) Gap-to-midgap ratio of the pseudobandgap of H polarization in the Γ M direction for a PC with S b S I pillars in air background, as a function of θ ( f = 0.5 ) . (b) Band structures of E and H polarization in Γ X M Γ for a PC with the same configuration as in (a) but with θ = 45 ° . (c) 2D band structure of the second band for a PC with the same configuration as in (a) but with θ = 45 ° . (d) 2D band structure of the third band for a PC with the same configuration as in (a) but with θ = 45 ° . (e) Gap-to-midgap ratio of the partial bandgap of H polarization (between the second and third bands) as a function of f for a PC with the same configuration as in (a).

Fig. 3
Fig. 3

(a) Gap-to-midgap ratio of the full bandgap of H polarization (between the first and second bands) as a function of f for PCs with air-hole structures. Open circles refer to S b S I case with θ = 45 ° ; closed circles refer to isotropic case with an refractive index of 3.8. The inset shows the gap-to-midgap ratio as a function of f for Δ n = 0 (solid curve), 0.7 (dashed curve), and 1.1 (solid curve), respectively. (b) 2D band structure of the first band for an anisotropic PC with the same configuration as in (a) but with f = 0.5 . (c) 2D band structure of the second band for an anisotropic PC with the same configuration as in (a) but with f = 0.5 .

Fig. 4
Fig. 4

Gap-to-midgap ratio as a function of Δ n for a PC with anisotropic materials, with n y = 3.8 and θ = 45 ° , for (a) partial bandgap of H polarization (in half an IBZ), between the second and third bands in pillar type PC, and (b) full bandgap of H polarization between the first and second bands for a PC with air hole structures, respectively. f min (open circles) as a function of Δ n is also shown in (b).

Fig. 5
Fig. 5

Variation of pseudobandgaps as a function of refractive index (H polarization). (a) The first gap of a PC with f = 0.64 , for isotropic pillars of refractive index n y . (b) The first gap of a PC with f = 0.64 and θ = 45 ° , for anisotropic pillars as a function of n y . Refractive index n x is kept at 1.5. (c) The first gap of a PC with f = 0.28 and air holes in an isotropic matrix of refractive index n y . (d) The first gap of a PC with f = 0.28 , θ = 45 ° and air holes in an anisotropic matrix as a function of n y . Refractive index n x is kept at 1.5.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

× [ ϵ 1 ( r ) ( × H ) ] = ( ω c ) 2 H ,
ϵ ( r ) = ϵ b + ( ϵ a ϵ b ) S ( r R ) ,
ϵ p = Q ( n x 2 0 0 0 n y 2 0 0 0 n z 2 ) Q T ,
G k + G k + G ( g 2 ϵ G G 1 g 2 ) h 1 ( G ) = ( ω c ) 2 h 1 ( G ) ,
G k + G k + G ( g 1 ϵ G G 1 g 1 ) h 2 ( G ) = ( ω c ) 2 h 2 ( G ) ,

Metrics