Abstract

A band structure of one-dimensional periodic media having an arbitrary inhomogeneous refractive index profile is extracted based on the modification committed on the differential-transfer-matrix method (DTMM). Furthermore, the most recently modified differential transfer matrix is improved by reshaping the formulation in terms of which the electromagnetic fields are expanded and closed form formulas, providing the allowed values of Bloch wavenumbers, which were not available before. Although the frequency gaps in previously published results that we derived by using the conventional DTMM were not in agreement with the well-known Bragg law at the edge of each Brillouin zone, the new results obtained by the proposed method are now matched with the Bragg condition. The final results are also justified by either employing conventional transfer-matrix method or comparing it with exact analytical solutions, wherever such exact solutions were available.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription