Abstract

We are concerned with providing a generally applicable optimization method for harnessing the low-phase-noise microwave–millimeter-wave signal generation capabilities of optoelectronic oscillator (OEO) structures. The gained benefits include the possibility of using inexpensive, commercially available bandpass filters; single-mode operation; equidistant spacing of modes; and total cancellation of spurious content in the output signal. Our theoretical ascertainments and simulation data are underlined by numerous experimental results, which were gained through measurements on OEO setups containing one, two, or three parallel connected optical loops. This design method also makes it possible to improve the oscillator’s performance, obviating the need for a filter of outstanding performance, ultimately of an unreachably high Q value and low thermal sensitivity.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. S. Yao and L. Maleki, "Optoelectronic microwave oscillator," J. Opt. Soc. Am. B 13, 1725-1732 (1996).
    [CrossRef]
  2. D. Eliyahu and L. Maleki, "Low phase noise and spurious level in multi-loop opto-electronic oscillators," in Proceedings of the 2003 IEEE International Frequency Control Symposium and POA Exhibition (IEEE, 2003), pp. 405-410.
    [CrossRef]
  3. D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, "Opto-electronic oscillator with improved phase noise and frequency stability," in Photonic Integrated Systems, L.A.Eldada, A.R.Pirich, P.L.Repak, R.T.Chen, and J.C.Chon, eds., Proc. SPIE 4998, 139-147 (2003).
  4. X. S. Yao and L. Maleki, "Multiloop optoelectronic oscillator," IEEE J. Quantum Electron. 36, 79-84 (2000).
    [CrossRef]
  5. D. H. Chang, H. R. Fetterman, H. Erlig, H. Zhang, M. C. Oh, C. Zhang, and W. H. Steier, "39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator," IEEE Photon. Technol. Lett. 14, 191-193 (2002).
    [CrossRef]
  6. X. S. Yao and L. Maleki, "High frequency optical subcarrier generator," Electron. Lett. 30, 1525-1526 (1994).
    [CrossRef]
  7. T. Bánky, B. Horváth, and T. Berceli, "A new approach for ultra-low phase noise millimeterwave opto-electronic oscillators," in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 205-208.
    [CrossRef]
  8. T. Bánky, T. Berceli, and B. Horváth, "Improving frequency stability of opto-electronic oscillators by harmonic tuning," in Digest of International Microwave Symposium (IEEE, 2004), Vol. 1, pp. 291-294.
  9. B. Horváth, T. Bánky, and T. Berceli, "Short-term stabilization of opto-electronic oscillators by multiple optical resonators," in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 115-118.

2002 (1)

D. H. Chang, H. R. Fetterman, H. Erlig, H. Zhang, M. C. Oh, C. Zhang, and W. H. Steier, "39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator," IEEE Photon. Technol. Lett. 14, 191-193 (2002).
[CrossRef]

2000 (1)

X. S. Yao and L. Maleki, "Multiloop optoelectronic oscillator," IEEE J. Quantum Electron. 36, 79-84 (2000).
[CrossRef]

1996 (1)

1994 (1)

X. S. Yao and L. Maleki, "High frequency optical subcarrier generator," Electron. Lett. 30, 1525-1526 (1994).
[CrossRef]

Bánky, T.

T. Bánky, B. Horváth, and T. Berceli, "A new approach for ultra-low phase noise millimeterwave opto-electronic oscillators," in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 205-208.
[CrossRef]

T. Bánky, T. Berceli, and B. Horváth, "Improving frequency stability of opto-electronic oscillators by harmonic tuning," in Digest of International Microwave Symposium (IEEE, 2004), Vol. 1, pp. 291-294.

B. Horváth, T. Bánky, and T. Berceli, "Short-term stabilization of opto-electronic oscillators by multiple optical resonators," in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 115-118.

Berceli, T.

B. Horváth, T. Bánky, and T. Berceli, "Short-term stabilization of opto-electronic oscillators by multiple optical resonators," in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 115-118.

T. Bánky, B. Horváth, and T. Berceli, "A new approach for ultra-low phase noise millimeterwave opto-electronic oscillators," in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 205-208.
[CrossRef]

T. Bánky, T. Berceli, and B. Horváth, "Improving frequency stability of opto-electronic oscillators by harmonic tuning," in Digest of International Microwave Symposium (IEEE, 2004), Vol. 1, pp. 291-294.

Chang, D. H.

D. H. Chang, H. R. Fetterman, H. Erlig, H. Zhang, M. C. Oh, C. Zhang, and W. H. Steier, "39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator," IEEE Photon. Technol. Lett. 14, 191-193 (2002).
[CrossRef]

Eliyahu, D.

D. Eliyahu and L. Maleki, "Low phase noise and spurious level in multi-loop opto-electronic oscillators," in Proceedings of the 2003 IEEE International Frequency Control Symposium and POA Exhibition (IEEE, 2003), pp. 405-410.
[CrossRef]

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, "Opto-electronic oscillator with improved phase noise and frequency stability," in Photonic Integrated Systems, L.A.Eldada, A.R.Pirich, P.L.Repak, R.T.Chen, and J.C.Chon, eds., Proc. SPIE 4998, 139-147 (2003).

Erlig, H.

D. H. Chang, H. R. Fetterman, H. Erlig, H. Zhang, M. C. Oh, C. Zhang, and W. H. Steier, "39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator," IEEE Photon. Technol. Lett. 14, 191-193 (2002).
[CrossRef]

Fetterman, H. R.

D. H. Chang, H. R. Fetterman, H. Erlig, H. Zhang, M. C. Oh, C. Zhang, and W. H. Steier, "39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator," IEEE Photon. Technol. Lett. 14, 191-193 (2002).
[CrossRef]

Horváth, B.

T. Bánky, T. Berceli, and B. Horváth, "Improving frequency stability of opto-electronic oscillators by harmonic tuning," in Digest of International Microwave Symposium (IEEE, 2004), Vol. 1, pp. 291-294.

B. Horváth, T. Bánky, and T. Berceli, "Short-term stabilization of opto-electronic oscillators by multiple optical resonators," in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 115-118.

T. Bánky, B. Horváth, and T. Berceli, "A new approach for ultra-low phase noise millimeterwave opto-electronic oscillators," in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 205-208.
[CrossRef]

Maleki, L.

X. S. Yao and L. Maleki, "Multiloop optoelectronic oscillator," IEEE J. Quantum Electron. 36, 79-84 (2000).
[CrossRef]

X. S. Yao and L. Maleki, "Optoelectronic microwave oscillator," J. Opt. Soc. Am. B 13, 1725-1732 (1996).
[CrossRef]

X. S. Yao and L. Maleki, "High frequency optical subcarrier generator," Electron. Lett. 30, 1525-1526 (1994).
[CrossRef]

D. Eliyahu and L. Maleki, "Low phase noise and spurious level in multi-loop opto-electronic oscillators," in Proceedings of the 2003 IEEE International Frequency Control Symposium and POA Exhibition (IEEE, 2003), pp. 405-410.
[CrossRef]

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, "Opto-electronic oscillator with improved phase noise and frequency stability," in Photonic Integrated Systems, L.A.Eldada, A.R.Pirich, P.L.Repak, R.T.Chen, and J.C.Chon, eds., Proc. SPIE 4998, 139-147 (2003).

Oh, M. C.

D. H. Chang, H. R. Fetterman, H. Erlig, H. Zhang, M. C. Oh, C. Zhang, and W. H. Steier, "39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator," IEEE Photon. Technol. Lett. 14, 191-193 (2002).
[CrossRef]

Sariri, K.

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, "Opto-electronic oscillator with improved phase noise and frequency stability," in Photonic Integrated Systems, L.A.Eldada, A.R.Pirich, P.L.Repak, R.T.Chen, and J.C.Chon, eds., Proc. SPIE 4998, 139-147 (2003).

Steier, W. H.

D. H. Chang, H. R. Fetterman, H. Erlig, H. Zhang, M. C. Oh, C. Zhang, and W. H. Steier, "39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator," IEEE Photon. Technol. Lett. 14, 191-193 (2002).
[CrossRef]

Taylor, J.

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, "Opto-electronic oscillator with improved phase noise and frequency stability," in Photonic Integrated Systems, L.A.Eldada, A.R.Pirich, P.L.Repak, R.T.Chen, and J.C.Chon, eds., Proc. SPIE 4998, 139-147 (2003).

Yao, X. S.

X. S. Yao and L. Maleki, "Multiloop optoelectronic oscillator," IEEE J. Quantum Electron. 36, 79-84 (2000).
[CrossRef]

X. S. Yao and L. Maleki, "Optoelectronic microwave oscillator," J. Opt. Soc. Am. B 13, 1725-1732 (1996).
[CrossRef]

X. S. Yao and L. Maleki, "High frequency optical subcarrier generator," Electron. Lett. 30, 1525-1526 (1994).
[CrossRef]

Zhang, C.

D. H. Chang, H. R. Fetterman, H. Erlig, H. Zhang, M. C. Oh, C. Zhang, and W. H. Steier, "39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator," IEEE Photon. Technol. Lett. 14, 191-193 (2002).
[CrossRef]

Zhang, H.

D. H. Chang, H. R. Fetterman, H. Erlig, H. Zhang, M. C. Oh, C. Zhang, and W. H. Steier, "39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator," IEEE Photon. Technol. Lett. 14, 191-193 (2002).
[CrossRef]

Electron. Lett. (1)

X. S. Yao and L. Maleki, "High frequency optical subcarrier generator," Electron. Lett. 30, 1525-1526 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. S. Yao and L. Maleki, "Multiloop optoelectronic oscillator," IEEE J. Quantum Electron. 36, 79-84 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. H. Chang, H. R. Fetterman, H. Erlig, H. Zhang, M. C. Oh, C. Zhang, and W. H. Steier, "39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator," IEEE Photon. Technol. Lett. 14, 191-193 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Other (5)

D. Eliyahu and L. Maleki, "Low phase noise and spurious level in multi-loop opto-electronic oscillators," in Proceedings of the 2003 IEEE International Frequency Control Symposium and POA Exhibition (IEEE, 2003), pp. 405-410.
[CrossRef]

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, "Opto-electronic oscillator with improved phase noise and frequency stability," in Photonic Integrated Systems, L.A.Eldada, A.R.Pirich, P.L.Repak, R.T.Chen, and J.C.Chon, eds., Proc. SPIE 4998, 139-147 (2003).

T. Bánky, B. Horváth, and T. Berceli, "A new approach for ultra-low phase noise millimeterwave opto-electronic oscillators," in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 205-208.
[CrossRef]

T. Bánky, T. Berceli, and B. Horváth, "Improving frequency stability of opto-electronic oscillators by harmonic tuning," in Digest of International Microwave Symposium (IEEE, 2004), Vol. 1, pp. 291-294.

B. Horváth, T. Bánky, and T. Berceli, "Short-term stabilization of opto-electronic oscillators by multiple optical resonators," in Proceedings of International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 115-118.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

General buildup of the OEO. PD, photodetector; DC, direct current; MZM, Mach–Zehnder modulator; LD, laser diode; LPF, low-pass filter; BPF, band pass filter.

Fig. 2
Fig. 2

Satisfaction of both amplitude and phase conditions for OEOs with different [(a) shorter, (b) longer] fiber delay lines.

Fig. 3
Fig. 3

Block diagram of the three-loop experimental setup.

Fig. 4
Fig. 4

Excited modes according to the conventional multiloop OEO design. CW, continuous-wave; M–Z, Mach–Zehnder.

Fig. 5
Fig. 5

Open-loop transmission functions around f 0 using (a) only a shorter optical loop, (b) only a longer optical loop, (c) both shorter and longer optical loops.

Fig. 6
Fig. 6

Phase transmission function of a dual-loop configuration for various power distribution ratios between the two optical fibers.

Fig. 7
Fig. 7

Phase transmission of one-, two-, and three-loop optimized OEOs around f 0 .

Fig. 8
Fig. 8

Optimally (black curve) and nonoptimally set (gray and white curves) multiloop OEO phase transmission functions.

Fig. 9
Fig. 9

Phase transmission function of a triple-loop optimized OEO. The length ratios are 1:8:15, and the optimum calculated relative power ratio is 0.6075148: 0.1842728: 0.2082124 (gray solid curve). Stability analysis gives grade of robustness of design method through the variation of relative (a) optical powers and (b) loop lengths.

Fig. 10
Fig. 10

Time-delay measurement of the shortest loop.

Fig. 11
Fig. 11

Open-loop phase transmission of a dual-loop ( n = 2 ) optimized OEO ( m = 8 ; a 2 = 0.353 ) while also depicting the phase slope of a one-loop setup.

Fig. 12
Fig. 12

Comparison of the power spectra of single-loop and optimized dual-loop OEOs (upper: span is 100 MHz ; lower: span is 10 MHz ).

Fig. 13
Fig. 13

Parasitic oscillation modes as a result of power higher than optimal having been assigned to the second loop.

Fig. 14
Fig. 14

Comparison of two- and three-loop OEOs.

Fig. 15
Fig. 15

Role of middle-long loops in the optimized OEO.

Fig. 16
Fig. 16

Power spectra of single-, dual-, and triple-loop OEOs.

Fig. 17
Fig. 17

Measured and simulated single-sideband phase noise values for one- and three-loop optimized OEOs (black line: n = 1 , τ 1 = 26.3 ns ; white line: n = 3 , a 1 = 0.54838 , a 2 = 0.18018 , a 3 = 0.27144 , m = 15 ).

Tables (1)

Tables Icon

Table 1 Loop Parameters of the Experimental Multiloop OEO Setup

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Q = f 0 Δ f ( FWHM ) = 2 π f 0 τ 2 δ ,
T = i = 1 n a i exp ( j 2 π f τ i ) ,
a i = P opt ̱ i k = 1 n P opt ̱ k .
τ i = [ ( i 1 ) m 1 n 1 + 1 ] τ 1 .
T = i = 1 n a i exp ( j 2 π f τ i ) = i = 1 n a i cos ( 2 π f τ i ) j i = 1 n a i sin ( 2 π f τ i ) .
Φ ( f ) = π 2 sign [ Im ( t ) ] arctan [ Re ( T ) Im ( T ) ] = arctan [ i = 1 n a i cos ( 2 π f τ i ) i = 1 n a i sin ( 2 π f τ i ) ] π 2 sign [ i = 1 n a i sin ( 2 π f τ i ) ] .
Φ * ( f ) = arccot [ i = 1 n a i cos ( 2 π f τ i ) i = 1 n a i sin ( 2 π f τ i ) ] .
Φ * ( f ) = Φ * f = 2 π h = 1 n a h 2 τ h + i = 1 n 1 j = i + 1 n a i a j ( τ i + τ j ) ϴ i j ( f ) h = 1 n a h 2 + 2 i = 1 n 1 j = i + 1 n a i a j ϴ i j ( f ) ,
{ Φ * { f [ f 0 + ( k 1 2 ) d f τ n , f 0 + k d f τ n ] } = φ , k = ( 1 , , n 1 ) , Φ * { f [ f 0 + ( k 1 2 ) d f τ n , f 0 + k d f τ n ] } = 0 , k = ( 1 , , n 1 ) , 1 = i a i , i = ( 1 , , n ) , }
Φ f f = 0 f = f 0 = 2 π i = 1 n a i j = 1 n a j τ j i = 1 n j = 1 n a i a j = 2 π j = 1 n a j τ j j = 1 n a j .
Φ f f = f 0 = 2 π j = 1 n a j τ j .

Metrics