Abstract

We demonstrate the highest-quality Bragg gratings reported to date in chalcogenide glass rib waveguides, both in strength and apodization. A modified Sagnac interferometer is employed to write gratings in As2S3-based rib waveguides, achieving an induced refractive index modulation of the order of 102 and a grating transmission rejection of more than 30dB. We obtain good agreement between experimental and theoretical results based on a transfer-matrix formulation for multilayer optical structures. In addition, we report fabrication of phase-shifted Bragg gratings, as well as an investigation of the role of birefringence, higher-order modes, and aging. Finally, grating growth dynamics are investigated by in situ monitoring during writing.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Laser Technol. 3, 142-148 (1997).
  2. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004).
    [CrossRef]
  3. A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, "First-and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses," J. Lightwave Technol. 17, 837-842 (1999).
    [CrossRef]
  4. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," presented at the 24th European Conference on Optical Communication (ECOC), Madrid, Spain, 20-24 September 1998.
  5. V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
    [CrossRef] [PubMed]
  6. L. Fu, M. Rochette, V. Ta'eed, D. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regenerator in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
    [CrossRef] [PubMed]
  7. C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
    [CrossRef]
  8. B. J. Eggleton, R. E. Slusher, C. M. d. Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
    [CrossRef] [PubMed]
  9. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  10. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, "Highly nonlinear As-S-Se glasses for all-optical switching," Opt. Lett. 27, 119-121 (2002).
    [CrossRef]
  11. Y. L. Ruan, W. T. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Opt. Express 12, 5140-5145 (2004).
    [CrossRef] [PubMed]
  12. A. Zakery and S. R. Elliott, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
    [CrossRef]
  13. K. Petkov and P. J. S. Ewen, "Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses," J. Non-Cryst. Solids 249, 150-159 (1999).
    [CrossRef]
  14. J. M. Laniel, N. Ho, R. Vallee, and A. Villeneuve, "Nonlinear refractive index measurement in As2S3 channel waveguides by asymmetric self-phase modulation," J. Opt. Soc. Am. B 22, 437-445 (2005).
    [CrossRef]
  15. A. Saliminia, K. L. Foulgoc, A. Villeneuve, and T. Galstian, "Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides," Fiber Integr. Opt. 20, 151-158 (2001).
  16. M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996).
    [CrossRef]
  17. S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, 1992).
  18. R. G. Walker, "Simple and accurate loss measurement technique for semiconductor optical waveguides," Electron. Lett. 21, 581-583 (1985).
    [CrossRef]
  19. R. G. Hunsperger, Integrated Optics: Theory and Technology, 5th ed. (Springer-Verlag, 2002).
  20. R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
    [CrossRef]
  21. M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodized Bragg gratings in chalcogenide rib waveguides," Electron. Lett. 41, 738-739 (2005).
    [CrossRef]
  22. N. Ponnampalam, R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "Small core rib waveguides with embedded gratings in As2Se3 glass," Opt. Express 12, 6270-6277 (2004).
    [CrossRef] [PubMed]
  23. T. G. Robinson, R. G. DeCorby, J. N. McMullin, C. J. Haugen, S. O. Kasap, and D. Tonchev, "Strong Bragg gratings photoinduced by 633-nm illumination in evaporated As2Se3 thin films," Opt. Lett. 28, 459-461 (2003).
    [CrossRef] [PubMed]
  24. R. Vallee, S. Frederick, K. Asatryan, M. Fischer, and T. Galstian, "Real-time observation of Bragg grating formation in As2S3 chalcogenide ridge waveguides," Opt. Commun. 230, 301-307 (2004).
    [CrossRef]
  25. H.-G. Frohlich and R. Kashyap, "Two methods of apodization of fibre Bragg gratings," Opt. Commun. 157, 273-281 (1998).
    [CrossRef]
  26. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  27. B. -G. Kim and E. Garmire, "Comparison between the matrix method and the coupled-wave method in the analysis of Bragg reflector structures," J. Opt. Soc. Am. A 9, 132-136 (1992).
    [CrossRef]
  28. M. D. Feit and J. A. Fleck, "Computation of mode properties in optical fiber wave-guides by a propagating beam method," Appl. Opt. 19, 1154-1164 (1980).
    [CrossRef] [PubMed]
  29. A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 21, 42-44 (2000).
    [CrossRef]
  30. R. Kashyap, P. F. McKee, and D. Armes, "UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks," Electron. Lett. 30, 1977-1978 (1994).
    [CrossRef]
  31. J. Canning and M. G. Sceats, "Pi-phase-shifted periodic distributed structures in optical fibres by UV post processing," Electron. Lett. 30, 1344-1345 (1994).
    [CrossRef]
  32. D. Uttamchandani and A. Othonos, "Phase-shifted Bragg gratings formed in optical fibres by postfabrication thermal processing," Opt. Commun. 127, 200-204 (1996).
    [CrossRef]
  33. A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, and J. A. Rogers, "Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters," Opt. Commun. 184, 119-125 (2000).
    [CrossRef]
  34. V. Ta'eed, D. Moss, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D. Xu, "Higher order mode conversion via focused ion beam milled Bragg gratings in silicon-on-insulator waveguides," Opt. Express 12, 5274-5284 (2004).
    [CrossRef] [PubMed]
  35. C. V. Poulsen, J. Hubner, T. Rasmussen, L.-U. A. Andersen, and M. Kristensen, "Characterization of dispersion properties in planar waveguides using UV-induced Bragg gratings," Electron. Lett. 31, 1437-1438 (1995).
    [CrossRef]
  36. K. Tanaka, K. Ishida, and N. Yoshida, "Mechanism of photoinduced anisotropy in chalcogenide glasses," Phys. Rev. B 54, 9190-9195 (1996).
    [CrossRef]
  37. O. Nordman, N. Nordman, and A. Ozols, "Influence of the age of amorphous nonannealed As2S3 thin films on holographic properties," Opt. Commun. 145, 38-42 (1998).
    [CrossRef]

2005 (4)

2004 (5)

2003 (2)

2002 (1)

2001 (1)

A. Saliminia, K. L. Foulgoc, A. Villeneuve, and T. Galstian, "Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides," Fiber Integr. Opt. 20, 151-158 (2001).

2000 (2)

A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, and J. A. Rogers, "Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters," Opt. Commun. 184, 119-125 (2000).
[CrossRef]

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 21, 42-44 (2000).
[CrossRef]

1999 (2)

K. Petkov and P. J. S. Ewen, "Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses," J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, "First-and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses," J. Lightwave Technol. 17, 837-842 (1999).
[CrossRef]

1998 (2)

H.-G. Frohlich and R. Kashyap, "Two methods of apodization of fibre Bragg gratings," Opt. Commun. 157, 273-281 (1998).
[CrossRef]

O. Nordman, N. Nordman, and A. Ozols, "Influence of the age of amorphous nonannealed As2S3 thin films on holographic properties," Opt. Commun. 145, 38-42 (1998).
[CrossRef]

1997 (3)

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Laser Technol. 3, 142-148 (1997).

C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
[CrossRef]

1996 (4)

B. J. Eggleton, R. E. Slusher, C. M. d. Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996).
[CrossRef]

D. Uttamchandani and A. Othonos, "Phase-shifted Bragg gratings formed in optical fibres by postfabrication thermal processing," Opt. Commun. 127, 200-204 (1996).
[CrossRef]

K. Tanaka, K. Ishida, and N. Yoshida, "Mechanism of photoinduced anisotropy in chalcogenide glasses," Phys. Rev. B 54, 9190-9195 (1996).
[CrossRef]

1995 (1)

C. V. Poulsen, J. Hubner, T. Rasmussen, L.-U. A. Andersen, and M. Kristensen, "Characterization of dispersion properties in planar waveguides using UV-induced Bragg gratings," Electron. Lett. 31, 1437-1438 (1995).
[CrossRef]

1994 (2)

R. Kashyap, P. F. McKee, and D. Armes, "UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks," Electron. Lett. 30, 1977-1978 (1994).
[CrossRef]

J. Canning and M. G. Sceats, "Pi-phase-shifted periodic distributed structures in optical fibres by UV post processing," Electron. Lett. 30, 1344-1345 (1994).
[CrossRef]

1992 (1)

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

1985 (1)

R. G. Walker, "Simple and accurate loss measurement technique for semiconductor optical waveguides," Electron. Lett. 21, 581-583 (1985).
[CrossRef]

1980 (1)

Aggarwal, I. D.

Ahuja, A. K.

A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, and J. A. Rogers, "Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters," Opt. Commun. 184, 119-125 (2000).
[CrossRef]

Andersen, L.-U. A.

C. V. Poulsen, J. Hubner, T. Rasmussen, L.-U. A. Andersen, and M. Kristensen, "Characterization of dispersion properties in planar waveguides using UV-induced Bragg gratings," Electron. Lett. 31, 1437-1438 (1995).
[CrossRef]

Armes, D.

R. Kashyap, P. F. McKee, and D. Armes, "UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks," Electron. Lett. 30, 1977-1978 (1994).
[CrossRef]

Asatryan, K.

R. Vallee, S. Frederick, K. Asatryan, M. Fischer, and T. Galstian, "Real-time observation of Bragg grating formation in As2S3 chalcogenide ridge waveguides," Opt. Commun. 230, 301-307 (2004).
[CrossRef]

Asobe, M.

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Laser Technol. 3, 142-148 (1997).

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996).
[CrossRef]

Canning, J.

J. Canning and M. G. Sceats, "Pi-phase-shifted periodic distributed structures in optical fibres by UV post processing," Electron. Lett. 30, 1344-1345 (1994).
[CrossRef]

Chinello, M.

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 21, 42-44 (2000).
[CrossRef]

DeCorby, R. G.

Dwivedi, P. K.

Eggleton, B. J.

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodized Bragg gratings in chalcogenide rib waveguides," Electron. Lett. 41, 738-739 (2005).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

L. Fu, M. Rochette, V. Ta'eed, D. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regenerator in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
[CrossRef] [PubMed]

V. Ta'eed, D. Moss, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D. Xu, "Higher order mode conversion via focused ion beam milled Bragg gratings in silicon-on-insulator waveguides," Opt. Express 12, 5274-5284 (2004).
[CrossRef] [PubMed]

A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, and J. A. Rogers, "Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters," Opt. Commun. 184, 119-125 (2000).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. d. Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

Elliott, S. R.

A. Zakery and S. R. Elliott, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

Erdogan, T.

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

Ewen, P. J. S.

K. Petkov and P. J. S. Ewen, "Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses," J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

Feit, M. D.

Fischer, M.

R. Vallee, S. Frederick, K. Asatryan, M. Fischer, and T. Galstian, "Real-time observation of Bragg grating formation in As2S3 chalcogenide ridge waveguides," Opt. Commun. 230, 301-307 (2004).
[CrossRef]

Fleck, J. A.

Foulgoc, K. L.

A. Saliminia, K. L. Foulgoc, A. Villeneuve, and T. Galstian, "Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides," Fiber Integr. Opt. 20, 151-158 (2001).

Frederick, S.

R. Vallee, S. Frederick, K. Asatryan, M. Fischer, and T. Galstian, "Real-time observation of Bragg grating formation in As2S3 chalcogenide ridge waveguides," Opt. Commun. 230, 301-307 (2004).
[CrossRef]

Freeman, D.

Frohlich, H.-G.

H.-G. Frohlich and R. Kashyap, "Two methods of apodization of fibre Bragg gratings," Opt. Commun. 157, 273-281 (1998).
[CrossRef]

Fu, L.

Galstian, T.

R. Vallee, S. Frederick, K. Asatryan, M. Fischer, and T. Galstian, "Real-time observation of Bragg grating formation in As2S3 chalcogenide ridge waveguides," Opt. Commun. 230, 301-307 (2004).
[CrossRef]

A. Saliminia, K. L. Foulgoc, A. Villeneuve, and T. Galstian, "Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides," Fiber Integr. Opt. 20, 151-158 (2001).

Galstyan, T. V.

Garmire, E.

Giles, C. R.

C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
[CrossRef]

Harbold, J. M.

Haugen, C. J.

Ho, N.

Hodelin, J.

Hubner, J.

C. V. Poulsen, J. Hubner, T. Rasmussen, L.-U. A. Andersen, and M. Kristensen, "Characterization of dispersion properties in planar waveguides using UV-induced Bragg gratings," Electron. Lett. 31, 1437-1438 (1995).
[CrossRef]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology, 5th ed. (Springer-Verlag, 2002).

Ilday, F. O.

Ishida, K.

K. Tanaka, K. Ishida, and N. Yoshida, "Mechanism of photoinduced anisotropy in chalcogenide glasses," Phys. Rev. B 54, 9190-9195 (1996).
[CrossRef]

Janz, S.

Jarvis, R.

Kaino, T.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996).
[CrossRef]

Kasap, S. O.

Kashyap, R.

H.-G. Frohlich and R. Kashyap, "Two methods of apodization of fibre Bragg gratings," Opt. Commun. 157, 273-281 (1998).
[CrossRef]

R. Kashyap, P. F. McKee, and D. Armes, "UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks," Electron. Lett. 30, 1977-1978 (1994).
[CrossRef]

Kim, B. -G.

Kristensen, M.

C. V. Poulsen, J. Hubner, T. Rasmussen, L.-U. A. Andersen, and M. Kristensen, "Characterization of dispersion properties in planar waveguides using UV-induced Bragg gratings," Electron. Lett. 31, 1437-1438 (1995).
[CrossRef]

Krug, P. A.

B. J. Eggleton, R. E. Slusher, C. M. d. Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

Laniel, J. M.

LaRochelle, S.

Lenz, G.

Li, W. T.

Littler, I. C. M.

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodized Bragg gratings in chalcogenide rib waveguides," Electron. Lett. 41, 738-739 (2005).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

Luther-Davies, B.

Madden, S.

Madsen, N.

Mamyshev, P. V.

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," presented at the 24th European Conference on Optical Communication (ECOC), Madrid, Spain, 20-24 September 1998.

Martinelli, M.

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 21, 42-44 (2000).
[CrossRef]

McKee, P. F.

R. Kashyap, P. F. McKee, and D. Armes, "UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks," Electron. Lett. 30, 1977-1978 (1994).
[CrossRef]

McMullin, J. N.

Melloni, A.

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 21, 42-44 (2000).
[CrossRef]

Moss, D.

Moss, D. J.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodized Bragg gratings in chalcogenide rib waveguides," Electron. Lett. 41, 738-739 (2005).
[CrossRef]

Najafi, S. I.

S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, 1992).

Nguyen, H. T.

Nguyen, V. Q.

Nordman, N.

O. Nordman, N. Nordman, and A. Ozols, "Influence of the age of amorphous nonannealed As2S3 thin films on holographic properties," Opt. Commun. 145, 38-42 (1998).
[CrossRef]

Nordman, O.

O. Nordman, N. Nordman, and A. Ozols, "Influence of the age of amorphous nonannealed As2S3 thin films on holographic properties," Opt. Commun. 145, 38-42 (1998).
[CrossRef]

Ohara, T.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996).
[CrossRef]

Othonos, A.

D. Uttamchandani and A. Othonos, "Phase-shifted Bragg gratings formed in optical fibres by postfabrication thermal processing," Opt. Commun. 127, 200-204 (1996).
[CrossRef]

Ozols, A.

O. Nordman, N. Nordman, and A. Ozols, "Influence of the age of amorphous nonannealed As2S3 thin films on holographic properties," Opt. Commun. 145, 38-42 (1998).
[CrossRef]

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Petkov, K.

K. Petkov and P. J. S. Ewen, "Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses," J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

Ponnampalam, N.

Poulsen, C. V.

C. V. Poulsen, J. Hubner, T. Rasmussen, L.-U. A. Andersen, and M. Kristensen, "Characterization of dispersion properties in planar waveguides using UV-induced Bragg gratings," Electron. Lett. 31, 1437-1438 (1995).
[CrossRef]

Rasmussen, T.

C. V. Poulsen, J. Hubner, T. Rasmussen, L.-U. A. Andersen, and M. Kristensen, "Characterization of dispersion properties in planar waveguides using UV-induced Bragg gratings," Electron. Lett. 31, 1437-1438 (1995).
[CrossRef]

Richardson, K.

Robinson, T. G.

Rochette, M.

Rode, A.

Rogers, J. A.

A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, and J. A. Rogers, "Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters," Opt. Commun. 184, 119-125 (2000).
[CrossRef]

Ruan, Y.

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodized Bragg gratings in chalcogenide rib waveguides," Electron. Lett. 41, 738-739 (2005).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

Ruan, Y. L.

Saliminia, A.

A. Saliminia, K. L. Foulgoc, A. Villeneuve, and T. Galstian, "Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides," Fiber Integr. Opt. 20, 151-158 (2001).

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, "First-and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses," J. Lightwave Technol. 17, 837-842 (1999).
[CrossRef]

Samoc, M.

Sanghera, J.

Sanghera, J. S.

Sceats, M. G.

J. Canning and M. G. Sceats, "Pi-phase-shifted periodic distributed structures in optical fibres by UV post processing," Electron. Lett. 30, 1344-1345 (1994).
[CrossRef]

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Shaw, L. B.

Shokooh-Saremi, M.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodized Bragg gratings in chalcogenide rib waveguides," Electron. Lett. 41, 738-739 (2005).
[CrossRef]

Sipe, J. E.

B. J. Eggleton, R. E. Slusher, C. M. d. Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

Slusher, R. E.

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Steinvurzel, P. E.

A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, and J. A. Rogers, "Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters," Opt. Commun. 184, 119-125 (2000).
[CrossRef]

Sterke, C. M. d.

B. J. Eggleton, R. E. Slusher, C. M. d. Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

Ta'eed, V.

Ta'eed, V. G.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef] [PubMed]

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodized Bragg gratings in chalcogenide rib waveguides," Electron. Lett. 41, 738-739 (2005).
[CrossRef]

Tanaka, K.

K. Tanaka, K. Ishida, and N. Yoshida, "Mechanism of photoinduced anisotropy in chalcogenide glasses," Phys. Rev. B 54, 9190-9195 (1996).
[CrossRef]

Tonchev, D.

Uttamchandani, D.

D. Uttamchandani and A. Othonos, "Phase-shifted Bragg gratings formed in optical fibres by postfabrication thermal processing," Opt. Commun. 127, 200-204 (1996).
[CrossRef]

Vallee, R.

J. M. Laniel, N. Ho, R. Vallee, and A. Villeneuve, "Nonlinear refractive index measurement in As2S3 channel waveguides by asymmetric self-phase modulation," J. Opt. Soc. Am. B 22, 437-445 (2005).
[CrossRef]

R. Vallee, S. Frederick, K. Asatryan, M. Fischer, and T. Galstian, "Real-time observation of Bragg grating formation in As2S3 chalcogenide ridge waveguides," Opt. Commun. 230, 301-307 (2004).
[CrossRef]

Villeneuve, A.

Walker, R. G.

R. G. Walker, "Simple and accurate loss measurement technique for semiconductor optical waveguides," Electron. Lett. 21, 581-583 (1985).
[CrossRef]

Wise, F. W.

Xu, D.

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Yokohama, I.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996).
[CrossRef]

Yoshida, N.

K. Tanaka, K. Ishida, and N. Yoshida, "Mechanism of photoinduced anisotropy in chalcogenide glasses," Phys. Rev. B 54, 9190-9195 (1996).
[CrossRef]

Zakery, A.

A. Zakery and S. R. Elliott, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (6)

C. V. Poulsen, J. Hubner, T. Rasmussen, L.-U. A. Andersen, and M. Kristensen, "Characterization of dispersion properties in planar waveguides using UV-induced Bragg gratings," Electron. Lett. 31, 1437-1438 (1995).
[CrossRef]

R. Kashyap, P. F. McKee, and D. Armes, "UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks," Electron. Lett. 30, 1977-1978 (1994).
[CrossRef]

J. Canning and M. G. Sceats, "Pi-phase-shifted periodic distributed structures in optical fibres by UV post processing," Electron. Lett. 30, 1344-1345 (1994).
[CrossRef]

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodized Bragg gratings in chalcogenide rib waveguides," Electron. Lett. 41, 738-739 (2005).
[CrossRef]

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996).
[CrossRef]

R. G. Walker, "Simple and accurate loss measurement technique for semiconductor optical waveguides," Electron. Lett. 21, 581-583 (1985).
[CrossRef]

Fiber Integr. Opt. (1)

A. Saliminia, K. L. Foulgoc, A. Villeneuve, and T. Galstian, "Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides," Fiber Integr. Opt. 20, 151-158 (2001).

IEEE J. Quantum Electron. (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Melloni, M. Chinello, and M. Martinelli, "All-optical switching in phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 21, 42-44 (2000).
[CrossRef]

J. Lightwave Technol. (3)

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, "First-and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses," J. Lightwave Technol. 17, 837-842 (1999).
[CrossRef]

C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
[CrossRef]

J. Non-Cryst. Solids (2)

A. Zakery and S. R. Elliott, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003).
[CrossRef]

K. Petkov and P. J. S. Ewen, "Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses," J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (5)

R. Vallee, S. Frederick, K. Asatryan, M. Fischer, and T. Galstian, "Real-time observation of Bragg grating formation in As2S3 chalcogenide ridge waveguides," Opt. Commun. 230, 301-307 (2004).
[CrossRef]

H.-G. Frohlich and R. Kashyap, "Two methods of apodization of fibre Bragg gratings," Opt. Commun. 157, 273-281 (1998).
[CrossRef]

D. Uttamchandani and A. Othonos, "Phase-shifted Bragg gratings formed in optical fibres by postfabrication thermal processing," Opt. Commun. 127, 200-204 (1996).
[CrossRef]

A. K. Ahuja, P. E. Steinvurzel, B. J. Eggleton, and J. A. Rogers, "Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters," Opt. Commun. 184, 119-125 (2000).
[CrossRef]

O. Nordman, N. Nordman, and A. Ozols, "Influence of the age of amorphous nonannealed As2S3 thin films on holographic properties," Opt. Commun. 145, 38-42 (1998).
[CrossRef]

Opt. Express (4)

Opt. Laser Technol. (1)

M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Laser Technol. 3, 142-148 (1997).

Opt. Lett. (3)

Phys. Rev. B (1)

K. Tanaka, K. Ishida, and N. Yoshida, "Mechanism of photoinduced anisotropy in chalcogenide glasses," Phys. Rev. B 54, 9190-9195 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

B. J. Eggleton, R. E. Slusher, C. M. d. Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

Other (4)

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," presented at the 24th European Conference on Optical Communication (ECOC), Madrid, Spain, 20-24 September 1998.

R. G. Hunsperger, Integrated Optics: Theory and Technology, 5th ed. (Springer-Verlag, 2002).

S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Schematic cross section of an As 2 S 3 -based rib waveguide and (b) an optical micrograph of a waveguide.

Fig. 2
Fig. 2

(a) Schematic of the grating writing setup based on the modified Sagnac interferometer and (b) the interferometer structure used to derive the equations.

Fig. 3
Fig. 3

Waveguide and grating characterization setup. ASE, amplified spontaneous emission, OSA, optical spectrum analyzer.

Fig. 4
Fig. 4

Normalized transmission spectrum of a strong, well-apodized grating for TE polarization. This grating has been written in a 4 μ m wide and 5 cm long waveguide ( H = 2.39 μ m , h = 1.39 μ m ).

Fig. 5
Fig. 5

General schematic view of a multilayer dielectric structure. The n ’s and d ’s are the layer refractive indices and thicknesses, respectively.

Fig. 6
Fig. 6

Experimental and theoretical normalized transmission spectra of a strong grating fabricated in a 5.3 cm long As 2 S 3 rib waveguide ( W = 4 μ m , H = 2.37 μ m , h = 1.25 μ m ). The specifications of the waveguide and grating are n 0 = 2.37 , Δ n dc = 0.0096 , v = 1 , L t = 7 μ mm , L g = 3 mm , and λ B = 1552.5 nm . Inset: the grating profile used for modeling.

Fig. 7
Fig. 7

(a) Mechanism of introduction of a defect by an opaque mask into the grating structure to obtain a phase-shifted grating and (b) experimental transmission spectrum (solid curve) of the resulting phase-shifted grating (TM polarization) versus the spectrum obtained from modeling (dashed–dotted curve).

Fig. 8
Fig. 8

Spectrum of a grating written in a 1.3 cm long waveguide and rib width of 5.2 μ m ( h = 1.0 μ m , H = 2.7 μ m ) for both TE and TM polarizations.

Fig. 9
Fig. 9

Mode profiles obtained using the beam propagation method for the modes referred to in Table 1.

Fig. 10
Fig. 10

Transmission spectrum of a grating (TE polarization) written in a 1.3 cm long waveguide measured as written and after one month.

Fig. 11
Fig. 11

Evolution of the transmission spectra of a grating during the writing process measured by an in situ monitoring setup after (a) 86, (b) 196, (c) 350, (d) 502, (e) 712 s . The thick solid curves represent the experiment, while the points are from modeling. Inset shows the modeled grating refractive profile.

Fig. 12
Fig. 12

Behavior of dc and ac refractive index changes over time calculated based on the experimental spectral data.

Tables (1)

Tables Icon

Table 1 Comparison between the Bragg Wavelength and Mode Indices Determined from the Spectrum in Fig. 8 and Those Simulated by the Beam Propagation Method

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

λ B = n eff λ w sin ( π 4 φ θ ) = n eff λ w sin ( η ) ,
Δ λ B = λ w sin ( η ) Δ n eff ,
Δ λ B λ B = cot ( η ) Δ η .
[ A 0 B 0 ] = M [ A N + 1 B N + 1 ] ,
M = [ M 11 M 12 M 21 M 22 ] = D 0 1 ( i = 1 N Q i ) D s ,
D 0 = [ 1 1 n 0 n 0 ] , D s = [ 1 1 n s n s ] ,
Q i = [ cos φ i j n i sin φ i j n i sin φ i cos φ i ] .
R = M 21 M 11 2 , T = n s n 0 1 M 11 2 .
n ( z ) = n 0 + Δ n dc exp [ z 2 2 ( L t 6 ) 2 ] { 1 + ν exp [ z 2 2 ( L g 4 ) 2 ] cos ( 2 π Λ z ) } ,
Δ n ac = Δ n dc ν exp ( z 2 2 ( L g 4 ) 2 ) exp [ z 2 2 ( L t 6 ) 2 ] .
λ p , q = Λ ( n eff , p + n eff , q ) .
λ q λ 0 = n eff , q + n eff , 0 2 n eff , 0 .
Δ n dc ( t ) = n 0 [ Δ λ B ( t ) λ i ] ,
Δ n ac ( t ) = n 0 [ Δ λ ( t ) λ B ( t ) ] .

Metrics