Abstract

Mode characteristics of a strongly confined square cavity suspended in air via a pedestal on the substrate are investigated by a three-dimensional finite-difference time-domain technique. The mode wavelengths and mode quality factors (Q factors) are calculated as the functions of the size of the pedestal and the slope angle θ of the sidewalls of the square slab, respectively. For the square slab with side length of 2μm, thickness of 0.2μm, and refractive index of 3.4, on a square pedestal with refractive index of 3.17, the Q factor of the whispering-gallery (WG)-like mode transverse-electric TE(3,5)o first increases with the side length b of the square pedestal and then quickly decreases as b>0.4μm, but the Q factor of the WG-like mode TE(4,6)o drops down quickly as b>0.2μm, owing to their different symmetries. The results indicate that the pedestal can also result in mode selection in the WG-like modes. In addition, the numerical results show that the Q factors decrease 50% as the slope angle of the sidewalls varies from 90° to 80°. The mode characteristics of WG-like modes in the square cavity with a rectangular pedestal are also discussed. The results show that the nonsquare pedestal largely degrades the WG-like modes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
    [CrossRef]
  2. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic wire laser," Phys. Rev. Lett. 75, 2678-2682 (1995).
    [CrossRef] [PubMed]
  3. Y. Z. Huang, W. H. Guo, and Q. M. Wang, "Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator," IEEE J. Quantum Electron. 37, 100-107 (2001).
    [CrossRef]
  4. C. Y. Fong and A. W. Poon, "Mode field patterns and preferential mode coupling in planar waveguide-coupled square microcavities," Opt. Express 11, 2897-2904 (2003).
    [CrossRef] [PubMed]
  5. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, "Modes in square resonators," IEEE J. Quantum Electron. 39, 1563-1566 (2003).
    [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Broem, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  7. S. M. K. Thiyagarajan, A. F. J. Levi, C. K. Lin, I. Kim, and S. J. Pearton, "Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
    [CrossRef]
  8. M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA," Electron. Lett. 36, 169-170 (2000).
    [CrossRef]
  9. M. Fujita, A. Sakai, and T. Baba, "Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
    [CrossRef]
  10. A. Taflove, Computational Electrodynamics—The Finite-Difference Time-Domain Method (Artech House, 1995).
  11. Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, "Analysis of modes in a freestanding microsquare resonator by 3-D finite-difference time-domain simulation," IEEE J. Quantum Electron. 41, 997-1001 (2005).
    [CrossRef]
  12. Y. Z. Huang, Q. Chen, W. H. Guo, and L. J. Yu, "Experimental observation of resonant modes in GaInAsP micro-square resonators," IEEE Photon. Technol. Lett. 17, 2589-2591 (2005).
    [CrossRef]
  13. S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, "Threshold reduction in pierced microdisk lasers," Appl. Phys. Lett. 74, 176-178 (1999).
    [CrossRef]
  14. M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
    [CrossRef]

2005

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, "Analysis of modes in a freestanding microsquare resonator by 3-D finite-difference time-domain simulation," IEEE J. Quantum Electron. 41, 997-1001 (2005).
[CrossRef]

Y. Z. Huang, Q. Chen, W. H. Guo, and L. J. Yu, "Experimental observation of resonant modes in GaInAsP micro-square resonators," IEEE Photon. Technol. Lett. 17, 2589-2591 (2005).
[CrossRef]

2003

2002

M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

2001

Y. Z. Huang, W. H. Guo, and Q. M. Wang, "Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator," IEEE J. Quantum Electron. 37, 100-107 (2001).
[CrossRef]

2000

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA," Electron. Lett. 36, 169-170 (2000).
[CrossRef]

1999

M. Fujita, A. Sakai, and T. Baba, "Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Broem, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, "Threshold reduction in pierced microdisk lasers," Appl. Phys. Lett. 74, 176-178 (1999).
[CrossRef]

1998

S. M. K. Thiyagarajan, A. F. J. Levi, C. K. Lin, I. Kim, and S. J. Pearton, "Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

1995

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic wire laser," Phys. Rev. Lett. 75, 2678-2682 (1995).
[CrossRef] [PubMed]

1992

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Baba, T.

M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA," Electron. Lett. 36, 169-170 (2000).
[CrossRef]

M. Fujita, A. Sakai, and T. Baba, "Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

Backes, S. A.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, "Threshold reduction in pierced microdisk lasers," Appl. Phys. Lett. 74, 176-178 (1999).
[CrossRef]

Baumberg, J. J.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, "Threshold reduction in pierced microdisk lasers," Appl. Phys. Lett. 74, 176-178 (1999).
[CrossRef]

Bi, W. G.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic wire laser," Phys. Rev. Lett. 75, 2678-2682 (1995).
[CrossRef] [PubMed]

Chen, Q.

Y. Z. Huang, Q. Chen, W. H. Guo, and L. J. Yu, "Experimental observation of resonant modes in GaInAsP micro-square resonators," IEEE Photon. Technol. Lett. 17, 2589-2591 (2005).
[CrossRef]

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, "Analysis of modes in a freestanding microsquare resonator by 3-D finite-difference time-domain simulation," IEEE J. Quantum Electron. 41, 997-1001 (2005).
[CrossRef]

Chu, D. Y.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic wire laser," Phys. Rev. Lett. 75, 2678-2682 (1995).
[CrossRef] [PubMed]

Cleaver, J. R. A.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, "Threshold reduction in pierced microdisk lasers," Appl. Phys. Lett. 74, 176-178 (1999).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Broem, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Fong, C. Y.

Fujita, M.

M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA," Electron. Lett. 36, 169-170 (2000).
[CrossRef]

M. Fujita, A. Sakai, and T. Baba, "Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

Guo, W. H.

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, "Analysis of modes in a freestanding microsquare resonator by 3-D finite-difference time-domain simulation," IEEE J. Quantum Electron. 41, 997-1001 (2005).
[CrossRef]

Y. Z. Huang, Q. Chen, W. H. Guo, and L. J. Yu, "Experimental observation of resonant modes in GaInAsP micro-square resonators," IEEE Photon. Technol. Lett. 17, 2589-2591 (2005).
[CrossRef]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, "Modes in square resonators," IEEE J. Quantum Electron. 39, 1563-1566 (2003).
[CrossRef]

Y. Z. Huang, W. H. Guo, and Q. M. Wang, "Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator," IEEE J. Quantum Electron. 37, 100-107 (2001).
[CrossRef]

Heberle, A. P.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, "Threshold reduction in pierced microdisk lasers," Appl. Phys. Lett. 74, 176-178 (1999).
[CrossRef]

Ho, S. T.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic wire laser," Phys. Rev. Lett. 75, 2678-2682 (1995).
[CrossRef] [PubMed]

Huang, Y. Z.

Y. Z. Huang, Q. Chen, W. H. Guo, and L. J. Yu, "Experimental observation of resonant modes in GaInAsP micro-square resonators," IEEE Photon. Technol. Lett. 17, 2589-2591 (2005).
[CrossRef]

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, "Analysis of modes in a freestanding microsquare resonator by 3-D finite-difference time-domain simulation," IEEE J. Quantum Electron. 41, 997-1001 (2005).
[CrossRef]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, "Modes in square resonators," IEEE J. Quantum Electron. 39, 1563-1566 (2003).
[CrossRef]

Y. Z. Huang, W. H. Guo, and Q. M. Wang, "Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator," IEEE J. Quantum Electron. 37, 100-107 (2001).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Broem, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

S. M. K. Thiyagarajan, A. F. J. Levi, C. K. Lin, I. Kim, and S. J. Pearton, "Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

Köhler, K.

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, "Threshold reduction in pierced microdisk lasers," Appl. Phys. Lett. 74, 176-178 (1999).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Broem, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Levi, A. F. J.

S. M. K. Thiyagarajan, A. F. J. Levi, C. K. Lin, I. Kim, and S. J. Pearton, "Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Lin, C. K.

S. M. K. Thiyagarajan, A. F. J. Levi, C. K. Lin, I. Kim, and S. J. Pearton, "Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Lu, Q. Y.

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, "Modes in square resonators," IEEE J. Quantum Electron. 39, 1563-1566 (2003).
[CrossRef]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

O'Broem, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Broem, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Broem, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Pearton, S. J.

S. M. K. Thiyagarajan, A. F. J. Levi, C. K. Lin, I. Kim, and S. J. Pearton, "Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Poon, A. W.

Sakai, A.

M. Fujita, A. Sakai, and T. Baba, "Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Broem, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics—The Finite-Difference Time-Domain Method (Artech House, 1995).

Thiyagarajan, S. M. K.

S. M. K. Thiyagarajan, A. F. J. Levi, C. K. Lin, I. Kim, and S. J. Pearton, "Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

Tiberio, R. C.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic wire laser," Phys. Rev. Lett. 75, 2678-2682 (1995).
[CrossRef] [PubMed]

Tu, C. W.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic wire laser," Phys. Rev. Lett. 75, 2678-2682 (1995).
[CrossRef] [PubMed]

Ushigome, R.

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA," Electron. Lett. 36, 169-170 (2000).
[CrossRef]

Wang, Q. M.

Y. Z. Huang, W. H. Guo, and Q. M. Wang, "Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator," IEEE J. Quantum Electron. 37, 100-107 (2001).
[CrossRef]

Wu, S. L.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic wire laser," Phys. Rev. Lett. 75, 2678-2682 (1995).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Broem, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Yu, L. J.

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, "Analysis of modes in a freestanding microsquare resonator by 3-D finite-difference time-domain simulation," IEEE J. Quantum Electron. 41, 997-1001 (2005).
[CrossRef]

Y. Z. Huang, Q. Chen, W. H. Guo, and L. J. Yu, "Experimental observation of resonant modes in GaInAsP micro-square resonators," IEEE Photon. Technol. Lett. 17, 2589-2591 (2005).
[CrossRef]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, "Modes in square resonators," IEEE J. Quantum Electron. 39, 1563-1566 (2003).
[CrossRef]

Zhang, J. P.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic wire laser," Phys. Rev. Lett. 75, 2678-2682 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992).
[CrossRef]

S. A. Backes, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Köhler, "Threshold reduction in pierced microdisk lasers," Appl. Phys. Lett. 74, 176-178 (1999).
[CrossRef]

M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

Electron. Lett.

S. M. K. Thiyagarajan, A. F. J. Levi, C. K. Lin, I. Kim, and S. J. Pearton, "Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers," Electron. Lett. 34, 2333-2334 (1998).
[CrossRef]

M. Fujita, R. Ushigome, and T. Baba, "Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA," Electron. Lett. 36, 169-170 (2000).
[CrossRef]

IEEE J. Quantum Electron.

Y. Z. Huang, W. H. Guo, and Q. M. Wang, "Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator," IEEE J. Quantum Electron. 37, 100-107 (2001).
[CrossRef]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, "Modes in square resonators," IEEE J. Quantum Electron. 39, 1563-1566 (2003).
[CrossRef]

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, "Analysis of modes in a freestanding microsquare resonator by 3-D finite-difference time-domain simulation," IEEE J. Quantum Electron. 41, 997-1001 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Fujita, A. Sakai, and T. Baba, "Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Z. Huang, Q. Chen, W. H. Guo, and L. J. Yu, "Experimental observation of resonant modes in GaInAsP micro-square resonators," IEEE Photon. Technol. Lett. 17, 2589-2591 (2005).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic wire laser," Phys. Rev. Lett. 75, 2678-2682 (1995).
[CrossRef] [PubMed]

Science

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Broem, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Other

A. Taflove, Computational Electrodynamics—The Finite-Difference Time-Domain Method (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Planform of the square cavity is supported by a pedestal of region 1. Type I and II pedestals are marked by shadow and dashed lines, respectively. (b) The side view of the square resonator with a pedestal. The dashed lines are the slope sidewalls.

Fig. 2
Fig. 2

Mode wavelengths (filled symbols) and Q factors (open symbols) versus the side length of the pedestal. (a) The circles and squares are the results of TE ( 3 , 5 ) o with type I and II pedestals, and the triangles and stars are the results of TE ( 4 , 6 ) o with type I and II pedestals. (b) The circles and squares are the results of TE ( 4 , 5 ) with type I and II pedestals.

Fig. 3
Fig. 3

Field distributions of H z for TE ( 3 , 5 ) o in the z = 0 plane in the square cavity with (a) type I and (b) type II pedestals and (c) a free-standing square cavity. (e), (f), and (g). The corresponding field distributions in the x = 0.22 μ m plane. (d) The field distribution of H z for TE ( 4 , 6 ) o in the z = 0 plane and (h) that in the x = 0 plane in the square cavity with the type I pedestal. The side length of the pedestal is set to be 0.3 μ m .

Fig. 4
Fig. 4

Mode wavelengths (filled symbols) and Q factors (open symbols) versus the slope angle of sidewalls in the square cavity with a pedestal, where the side length of the pedestal is set to be 0.3 μ m . (a) The circles and the squares are the results of TE ( 3 , 5 ) o with type I and II pedestals, and the triangles and the stars are the results of TE ( 4 , 6 ) o in the square cavity with type I and II pedestals. The field distribution of H z of TE ( 3 , 5 ) o in the x = 0.22 μ m plane of the square cavity with type I and II pedestals at θ = 75 ° are shown in insets 1 and 2, respectively. (b) The circles and squares are the results of TE ( 4 , 5 ) in the square cavity with type I and II pedestals.

Tables (1)

Tables Icon

Table 1 Q Factors of TE ( 3 , 5 ) o , TE ( 4 , 6 ) o , and TE ( 4 , 5 ) in a Square Cavity with a Rectangular Pedestal

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G s ( t ) = exp [ ( t t 0 ) 2 t w 2 ] cos ( 2 π f 0 t )
Q = f Δ f FWHM .

Metrics