Abstract

We describe the characterize a compact ring Ti:sapphire laser injection locked to an extended-cavity semiconductor source. The laser system has a good spectral purity and allows for fast scans, keeping the injection-locking condition. We analyze experimentally the amplitude noise properties of the free-running and injected laser and show good agreement with a quantum-mechanical model. In spite of the sub-shot-noise properties of the semiconductor source, the injected laser exhibits strong excess amplitude fluctuations. We show that this effect is due to the conversion of the strong phase noise of the semiconductor laser into amplitude noise of the injected Ti:sapphire laser.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Freitag and H. Welling, "Investigation on amplitude and frequency noise of injection-locked diode-pumped Nd:Yag lasers," Appl. Phys. B 58, 537-544 (1994).
    [CrossRef]
  2. A. D. Farinas, E. K. Gustaffson, and R. L. Byer, "Frequency and intensity noise in an injection-locked, solid-state laser," J. Opt. Soc. Am. B 12, 328-334 (1995).
    [CrossRef]
  3. C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, "Intensity-noise properties of injection-locked lasers," Phys. Rev. A 54, 4370-4382 (1995).
    [CrossRef]
  4. T. C. Ralph, C. C. Harb, and H.-A. Bachor, "Intensity noise properties of injection-locked lasers: quantum theory using a linearized input-output method," Phys. Rev. A 54, 4359-4369 (1996).
    [CrossRef] [PubMed]
  5. A. Bramati, J.-P. Hermier,V. Jost, and E. Giacobino, "Intensity noise of injected Nd:YVO4 microchip lasers," Eur. Phys. J. D 19, 421-427 (2002).
  6. A. Bramati, J.-P. Hermier, V. Jost, E. Giacobino, J. J. Aubert, E. Molva, and L. Fulbert, "Effects of pump fluctuation on intensity noise of Nd:YVO4 microchip lasers," Eur. Phys. J. D 6, 513-521 (1999).
    [CrossRef]
  7. S. Machida, Y. Yamamoto, and Y. Itaya, "Observation of amplitude squeezing in a constant-current-driven semiconductor laser," Phys. Rev. Lett. 58, 1000-1003 (1987).
    [CrossRef] [PubMed]
  8. M. J. Freeman, H. Wang, D. G. Steel, R. Craig, and D. R. Scifres, "Wavelength-tunable amplitude-squeezed light from a room-temperature quantum-well laser," Opt. Lett. 18, 2141-2143 (1993).
    [CrossRef] [PubMed]
  9. F. Marin, A. Bramati, E. Giacobino, T. C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, "Squeezing and intermode correlations in laser diodes," Phys. Rev. Lett. 75, 4606-4609 (1995).
    [CrossRef] [PubMed]
  10. The authors of Ref. have agreed with the following corrections to that paper: (1) The field operators (âf and âi) in the last term on the right side of the first two equations should not appear; (2) in Eqs. , G should be G̃, or G/N; and (3) the expression for the output noise of the injected laser is not correct, having been obtained from a wrong definition of the output amplitude quadrature. A more rigorous derivation of the noise terms can be found in T. C. Ralph, in Quantum Squeezing, P.D.Drummond and Z.Ficek, eds. (Springer-Verlag, 2004), pp. 141-170.
  11. P. Galatola, L. Lugiato, M. Porreca, P. Tombesi, and G. Leuchs, "System control by variation of the squeezing phase," Opt. Commun. 85, 95-103 (1991).
    [CrossRef]
  12. C. Zimmermann, V. Vuletic, A. Hemmerich, L. Ricci, and T. W. Hänsch, "Design for a compact tunable Ti:sapphire laser," Opt. Lett. 20, 297-299 (1995).
    [CrossRef] [PubMed]
  13. E. A. Cummings, M. S. Hicken, and S. D. Bergrson, "Demonstration of a 1-W injection-locked continuous-wave titanium:sapphire laser," Appl. Opt. 41, 7583-7587 (2002).
    [CrossRef]
  14. C. E. Wieman and L. Hollberg, "Using diode lasers for atomic physics," Rev. Sci. Instrum. 62, 1-20 (1991).
    [CrossRef]
  15. R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
    [CrossRef]
  16. P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B 3, 125-133 (1986).
    [CrossRef]
  17. T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, "Quantum noise of free-running and externally-stabilized laser diodes," Quantum Semiclassic. Opt. 7, 601-613 (1995).
    [CrossRef]
  18. A. Zavatta, F. Marin, and G. Giacomelli, "Quantum-state reconstruction of a squeezed laser field by self-homodyne tomography," Phys. Rev. A 66, 043805 (2002).
    [CrossRef]
  19. A. L. Shawlow and C. H. Townes, "Infrared and optical masers," Phys. Rev. 112, 1940-1949 (1958).
    [CrossRef]
  20. D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, and L. W. Hollberg, "Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers," Appl. Phys. B 70, 747-750 (2000).
    [CrossRef]
  21. B. Dahmani, L. Hollberg, and R. Drullinger, "Frequency stabilization of semiconductor lasers by resonant optical feedback," Opt. Lett. 12, 876-878 (1987).
    [CrossRef] [PubMed]
  22. Y. Shevy, J. Iannelli, J. Kitching, and A. Yariv, "Self-quenching of the semiconductor laser linewidth below the Schawlow-Townes limit using optical feedback," Opt. Lett. 17, 661-663 (1992).
    [CrossRef] [PubMed]

2002 (3)

A. Bramati, J.-P. Hermier,V. Jost, and E. Giacobino, "Intensity noise of injected Nd:YVO4 microchip lasers," Eur. Phys. J. D 19, 421-427 (2002).

A. Zavatta, F. Marin, and G. Giacomelli, "Quantum-state reconstruction of a squeezed laser field by self-homodyne tomography," Phys. Rev. A 66, 043805 (2002).
[CrossRef]

E. A. Cummings, M. S. Hicken, and S. D. Bergrson, "Demonstration of a 1-W injection-locked continuous-wave titanium:sapphire laser," Appl. Opt. 41, 7583-7587 (2002).
[CrossRef]

2000 (1)

D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, and L. W. Hollberg, "Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers," Appl. Phys. B 70, 747-750 (2000).
[CrossRef]

1999 (1)

A. Bramati, J.-P. Hermier, V. Jost, E. Giacobino, J. J. Aubert, E. Molva, and L. Fulbert, "Effects of pump fluctuation on intensity noise of Nd:YVO4 microchip lasers," Eur. Phys. J. D 6, 513-521 (1999).
[CrossRef]

1996 (1)

T. C. Ralph, C. C. Harb, and H.-A. Bachor, "Intensity noise properties of injection-locked lasers: quantum theory using a linearized input-output method," Phys. Rev. A 54, 4359-4369 (1996).
[CrossRef] [PubMed]

1995 (5)

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, "Intensity-noise properties of injection-locked lasers," Phys. Rev. A 54, 4370-4382 (1995).
[CrossRef]

F. Marin, A. Bramati, E. Giacobino, T. C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, "Squeezing and intermode correlations in laser diodes," Phys. Rev. Lett. 75, 4606-4609 (1995).
[CrossRef] [PubMed]

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, "Quantum noise of free-running and externally-stabilized laser diodes," Quantum Semiclassic. Opt. 7, 601-613 (1995).
[CrossRef]

A. D. Farinas, E. K. Gustaffson, and R. L. Byer, "Frequency and intensity noise in an injection-locked, solid-state laser," J. Opt. Soc. Am. B 12, 328-334 (1995).
[CrossRef]

C. Zimmermann, V. Vuletic, A. Hemmerich, L. Ricci, and T. W. Hänsch, "Design for a compact tunable Ti:sapphire laser," Opt. Lett. 20, 297-299 (1995).
[CrossRef] [PubMed]

1994 (1)

I. Freitag and H. Welling, "Investigation on amplitude and frequency noise of injection-locked diode-pumped Nd:Yag lasers," Appl. Phys. B 58, 537-544 (1994).
[CrossRef]

1993 (1)

1992 (1)

1991 (2)

C. E. Wieman and L. Hollberg, "Using diode lasers for atomic physics," Rev. Sci. Instrum. 62, 1-20 (1991).
[CrossRef]

P. Galatola, L. Lugiato, M. Porreca, P. Tombesi, and G. Leuchs, "System control by variation of the squeezing phase," Opt. Commun. 85, 95-103 (1991).
[CrossRef]

1987 (2)

S. Machida, Y. Yamamoto, and Y. Itaya, "Observation of amplitude squeezing in a constant-current-driven semiconductor laser," Phys. Rev. Lett. 58, 1000-1003 (1987).
[CrossRef] [PubMed]

B. Dahmani, L. Hollberg, and R. Drullinger, "Frequency stabilization of semiconductor lasers by resonant optical feedback," Opt. Lett. 12, 876-878 (1987).
[CrossRef] [PubMed]

1986 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

1958 (1)

A. L. Shawlow and C. H. Townes, "Infrared and optical masers," Phys. Rev. 112, 1940-1949 (1958).
[CrossRef]

Aubert, J. J.

A. Bramati, J.-P. Hermier, V. Jost, E. Giacobino, J. J. Aubert, E. Molva, and L. Fulbert, "Effects of pump fluctuation on intensity noise of Nd:YVO4 microchip lasers," Eur. Phys. J. D 6, 513-521 (1999).
[CrossRef]

Bachor, H.-A.

T. C. Ralph, C. C. Harb, and H.-A. Bachor, "Intensity noise properties of injection-locked lasers: quantum theory using a linearized input-output method," Phys. Rev. A 54, 4359-4369 (1996).
[CrossRef] [PubMed]

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, "Intensity-noise properties of injection-locked lasers," Phys. Rev. A 54, 4370-4382 (1995).
[CrossRef]

Bergrson, S. D.

Bramati, A.

A. Bramati, J.-P. Hermier,V. Jost, and E. Giacobino, "Intensity noise of injected Nd:YVO4 microchip lasers," Eur. Phys. J. D 19, 421-427 (2002).

A. Bramati, J.-P. Hermier, V. Jost, E. Giacobino, J. J. Aubert, E. Molva, and L. Fulbert, "Effects of pump fluctuation on intensity noise of Nd:YVO4 microchip lasers," Eur. Phys. J. D 6, 513-521 (1999).
[CrossRef]

F. Marin, A. Bramati, E. Giacobino, T. C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, "Squeezing and intermode correlations in laser diodes," Phys. Rev. Lett. 75, 4606-4609 (1995).
[CrossRef] [PubMed]

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, "Quantum noise of free-running and externally-stabilized laser diodes," Quantum Semiclassic. Opt. 7, 601-613 (1995).
[CrossRef]

Byer, R. L.

Craig, R.

Cummings, E. A.

Dahmani, B.

De Natale, P.

D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, and L. W. Hollberg, "Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers," Appl. Phys. B 70, 747-750 (2000).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Drullinger, R.

Farinas, A. D.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Fort, C.

D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, and L. W. Hollberg, "Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers," Appl. Phys. B 70, 747-750 (2000).
[CrossRef]

Freeman, M. J.

Freitag, I.

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, "Intensity-noise properties of injection-locked lasers," Phys. Rev. A 54, 4370-4382 (1995).
[CrossRef]

I. Freitag and H. Welling, "Investigation on amplitude and frequency noise of injection-locked diode-pumped Nd:Yag lasers," Appl. Phys. B 58, 537-544 (1994).
[CrossRef]

Fulbert, L.

A. Bramati, J.-P. Hermier, V. Jost, E. Giacobino, J. J. Aubert, E. Molva, and L. Fulbert, "Effects of pump fluctuation on intensity noise of Nd:YVO4 microchip lasers," Eur. Phys. J. D 6, 513-521 (1999).
[CrossRef]

Galatola, P.

P. Galatola, L. Lugiato, M. Porreca, P. Tombesi, and G. Leuchs, "System control by variation of the squeezing phase," Opt. Commun. 85, 95-103 (1991).
[CrossRef]

Giacobino, E.

A. Bramati, J.-P. Hermier,V. Jost, and E. Giacobino, "Intensity noise of injected Nd:YVO4 microchip lasers," Eur. Phys. J. D 19, 421-427 (2002).

A. Bramati, J.-P. Hermier, V. Jost, E. Giacobino, J. J. Aubert, E. Molva, and L. Fulbert, "Effects of pump fluctuation on intensity noise of Nd:YVO4 microchip lasers," Eur. Phys. J. D 6, 513-521 (1999).
[CrossRef]

F. Marin, A. Bramati, E. Giacobino, T. C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, "Squeezing and intermode correlations in laser diodes," Phys. Rev. Lett. 75, 4606-4609 (1995).
[CrossRef] [PubMed]

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, "Quantum noise of free-running and externally-stabilized laser diodes," Quantum Semiclassic. Opt. 7, 601-613 (1995).
[CrossRef]

Giacomelli, G.

A. Zavatta, F. Marin, and G. Giacomelli, "Quantum-state reconstruction of a squeezed laser field by self-homodyne tomography," Phys. Rev. A 66, 043805 (2002).
[CrossRef]

Giusfredi, G.

D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, and L. W. Hollberg, "Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers," Appl. Phys. B 70, 747-750 (2000).
[CrossRef]

Grangier, P.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, "Quantum noise of free-running and externally-stabilized laser diodes," Quantum Semiclassic. Opt. 7, 601-613 (1995).
[CrossRef]

F. Marin, A. Bramati, E. Giacobino, T. C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, "Squeezing and intermode correlations in laser diodes," Phys. Rev. Lett. 75, 4606-4609 (1995).
[CrossRef] [PubMed]

Grelu, P.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, "Quantum noise of free-running and externally-stabilized laser diodes," Quantum Semiclassic. Opt. 7, 601-613 (1995).
[CrossRef]

Gustaffson, E. K.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Hänsch, T. W.

Harb, C. C.

T. C. Ralph, C. C. Harb, and H.-A. Bachor, "Intensity noise properties of injection-locked lasers: quantum theory using a linearized input-output method," Phys. Rev. A 54, 4359-4369 (1996).
[CrossRef] [PubMed]

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, "Intensity-noise properties of injection-locked lasers," Phys. Rev. A 54, 4370-4382 (1995).
[CrossRef]

Hemmerich, A.

Hermier, J.-P.

A. Bramati, J.-P. Hermier,V. Jost, and E. Giacobino, "Intensity noise of injected Nd:YVO4 microchip lasers," Eur. Phys. J. D 19, 421-427 (2002).

A. Bramati, J.-P. Hermier, V. Jost, E. Giacobino, J. J. Aubert, E. Molva, and L. Fulbert, "Effects of pump fluctuation on intensity noise of Nd:YVO4 microchip lasers," Eur. Phys. J. D 6, 513-521 (1999).
[CrossRef]

Hicken, M. S.

Hollberg, L.

Hollberg, L. W.

D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, and L. W. Hollberg, "Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers," Appl. Phys. B 70, 747-750 (2000).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Huntington, E. H.

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, "Intensity-noise properties of injection-locked lasers," Phys. Rev. A 54, 4370-4382 (1995).
[CrossRef]

Iannelli, J.

Itaya, Y.

S. Machida, Y. Yamamoto, and Y. Itaya, "Observation of amplitude squeezing in a constant-current-driven semiconductor laser," Phys. Rev. Lett. 58, 1000-1003 (1987).
[CrossRef] [PubMed]

Jost, V.

A. Bramati, J.-P. Hermier,V. Jost, and E. Giacobino, "Intensity noise of injected Nd:YVO4 microchip lasers," Eur. Phys. J. D 19, 421-427 (2002).

A. Bramati, J.-P. Hermier, V. Jost, E. Giacobino, J. J. Aubert, E. Molva, and L. Fulbert, "Effects of pump fluctuation on intensity noise of Nd:YVO4 microchip lasers," Eur. Phys. J. D 6, 513-521 (1999).
[CrossRef]

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, "Quantum noise of free-running and externally-stabilized laser diodes," Quantum Semiclassic. Opt. 7, 601-613 (1995).
[CrossRef]

Kitching, J.

Kowalski, F. W.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Leuchs, G.

P. Galatola, L. Lugiato, M. Porreca, P. Tombesi, and G. Leuchs, "System control by variation of the squeezing phase," Opt. Commun. 85, 95-103 (1991).
[CrossRef]

Levenson, M. D.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, "Quantum noise of free-running and externally-stabilized laser diodes," Quantum Semiclassic. Opt. 7, 601-613 (1995).
[CrossRef]

Lugiato, L.

P. Galatola, L. Lugiato, M. Porreca, P. Tombesi, and G. Leuchs, "System control by variation of the squeezing phase," Opt. Commun. 85, 95-103 (1991).
[CrossRef]

Machida, S.

S. Machida, Y. Yamamoto, and Y. Itaya, "Observation of amplitude squeezing in a constant-current-driven semiconductor laser," Phys. Rev. Lett. 58, 1000-1003 (1987).
[CrossRef] [PubMed]

Marin, F.

A. Zavatta, F. Marin, and G. Giacomelli, "Quantum-state reconstruction of a squeezed laser field by self-homodyne tomography," Phys. Rev. A 66, 043805 (2002).
[CrossRef]

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, "Quantum noise of free-running and externally-stabilized laser diodes," Quantum Semiclassic. Opt. 7, 601-613 (1995).
[CrossRef]

F. Marin, A. Bramati, E. Giacobino, T. C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, "Squeezing and intermode correlations in laser diodes," Phys. Rev. Lett. 75, 4606-4609 (1995).
[CrossRef] [PubMed]

Mazzotti, D.

D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, and L. W. Hollberg, "Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers," Appl. Phys. B 70, 747-750 (2000).
[CrossRef]

McClelland, D. E.

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, "Intensity-noise properties of injection-locked lasers," Phys. Rev. A 54, 4370-4382 (1995).
[CrossRef]

Mitchell, J. A.

D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, and L. W. Hollberg, "Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers," Appl. Phys. B 70, 747-750 (2000).
[CrossRef]

Molva, E.

A. Bramati, J.-P. Hermier, V. Jost, E. Giacobino, J. J. Aubert, E. Molva, and L. Fulbert, "Effects of pump fluctuation on intensity noise of Nd:YVO4 microchip lasers," Eur. Phys. J. D 6, 513-521 (1999).
[CrossRef]

Moulton, P. F.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Poizat, J.-P.

F. Marin, A. Bramati, E. Giacobino, T. C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, "Squeezing and intermode correlations in laser diodes," Phys. Rev. Lett. 75, 4606-4609 (1995).
[CrossRef] [PubMed]

Poizat, J.-Ph.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, "Quantum noise of free-running and externally-stabilized laser diodes," Quantum Semiclassic. Opt. 7, 601-613 (1995).
[CrossRef]

Porreca, M.

P. Galatola, L. Lugiato, M. Porreca, P. Tombesi, and G. Leuchs, "System control by variation of the squeezing phase," Opt. Commun. 85, 95-103 (1991).
[CrossRef]

Ralph, T. C.

T. C. Ralph, C. C. Harb, and H.-A. Bachor, "Intensity noise properties of injection-locked lasers: quantum theory using a linearized input-output method," Phys. Rev. A 54, 4359-4369 (1996).
[CrossRef] [PubMed]

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, "Intensity-noise properties of injection-locked lasers," Phys. Rev. A 54, 4370-4382 (1995).
[CrossRef]

The authors of Ref. have agreed with the following corrections to that paper: (1) The field operators (âf and âi) in the last term on the right side of the first two equations should not appear; (2) in Eqs. , G should be G̃, or G/N; and (3) the expression for the output noise of the injected laser is not correct, having been obtained from a wrong definition of the output amplitude quadrature. A more rigorous derivation of the noise terms can be found in T. C. Ralph, in Quantum Squeezing, P.D.Drummond and Z.Ficek, eds. (Springer-Verlag, 2004), pp. 141-170.

Ricci, L.

Roch, J.-F.

F. Marin, A. Bramati, E. Giacobino, T. C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, "Squeezing and intermode correlations in laser diodes," Phys. Rev. Lett. 75, 4606-4609 (1995).
[CrossRef] [PubMed]

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, "Quantum noise of free-running and externally-stabilized laser diodes," Quantum Semiclassic. Opt. 7, 601-613 (1995).
[CrossRef]

Scifres, D. R.

Shawlow, A. L.

A. L. Shawlow and C. H. Townes, "Infrared and optical masers," Phys. Rev. 112, 1940-1949 (1958).
[CrossRef]

Shevy, Y.

Steel, D. G.

Tombesi, P.

P. Galatola, L. Lugiato, M. Porreca, P. Tombesi, and G. Leuchs, "System control by variation of the squeezing phase," Opt. Commun. 85, 95-103 (1991).
[CrossRef]

Townes, C. H.

A. L. Shawlow and C. H. Townes, "Infrared and optical masers," Phys. Rev. 112, 1940-1949 (1958).
[CrossRef]

Vuletic, V.

Wang, H.

Ward, H.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Welling, H.

I. Freitag and H. Welling, "Investigation on amplitude and frequency noise of injection-locked diode-pumped Nd:Yag lasers," Appl. Phys. B 58, 537-544 (1994).
[CrossRef]

Wieman, C. E.

C. E. Wieman and L. Hollberg, "Using diode lasers for atomic physics," Rev. Sci. Instrum. 62, 1-20 (1991).
[CrossRef]

Yamamoto, Y.

S. Machida, Y. Yamamoto, and Y. Itaya, "Observation of amplitude squeezing in a constant-current-driven semiconductor laser," Phys. Rev. Lett. 58, 1000-1003 (1987).
[CrossRef] [PubMed]

Yariv, A.

Zavatta, A.

A. Zavatta, F. Marin, and G. Giacomelli, "Quantum-state reconstruction of a squeezed laser field by self-homodyne tomography," Phys. Rev. A 66, 043805 (2002).
[CrossRef]

Zhang, T. C.

F. Marin, A. Bramati, E. Giacobino, T. C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, "Squeezing and intermode correlations in laser diodes," Phys. Rev. Lett. 75, 4606-4609 (1995).
[CrossRef] [PubMed]

Zhang, T.-C.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, "Quantum noise of free-running and externally-stabilized laser diodes," Quantum Semiclassic. Opt. 7, 601-613 (1995).
[CrossRef]

Zimmermann, C.

Appl. Opt. (1)

Appl. Phys. B (3)

I. Freitag and H. Welling, "Investigation on amplitude and frequency noise of injection-locked diode-pumped Nd:Yag lasers," Appl. Phys. B 58, 537-544 (1994).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, and L. W. Hollberg, "Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers," Appl. Phys. B 70, 747-750 (2000).
[CrossRef]

Eur. Phys. J. D (2)

A. Bramati, J.-P. Hermier,V. Jost, and E. Giacobino, "Intensity noise of injected Nd:YVO4 microchip lasers," Eur. Phys. J. D 19, 421-427 (2002).

A. Bramati, J.-P. Hermier, V. Jost, E. Giacobino, J. J. Aubert, E. Molva, and L. Fulbert, "Effects of pump fluctuation on intensity noise of Nd:YVO4 microchip lasers," Eur. Phys. J. D 6, 513-521 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

P. Galatola, L. Lugiato, M. Porreca, P. Tombesi, and G. Leuchs, "System control by variation of the squeezing phase," Opt. Commun. 85, 95-103 (1991).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. (1)

A. L. Shawlow and C. H. Townes, "Infrared and optical masers," Phys. Rev. 112, 1940-1949 (1958).
[CrossRef]

Phys. Rev. A (3)

A. Zavatta, F. Marin, and G. Giacomelli, "Quantum-state reconstruction of a squeezed laser field by self-homodyne tomography," Phys. Rev. A 66, 043805 (2002).
[CrossRef]

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, "Intensity-noise properties of injection-locked lasers," Phys. Rev. A 54, 4370-4382 (1995).
[CrossRef]

T. C. Ralph, C. C. Harb, and H.-A. Bachor, "Intensity noise properties of injection-locked lasers: quantum theory using a linearized input-output method," Phys. Rev. A 54, 4359-4369 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

S. Machida, Y. Yamamoto, and Y. Itaya, "Observation of amplitude squeezing in a constant-current-driven semiconductor laser," Phys. Rev. Lett. 58, 1000-1003 (1987).
[CrossRef] [PubMed]

F. Marin, A. Bramati, E. Giacobino, T. C. Zhang, J.-P. Poizat, J.-F. Roch, and P. Grangier, "Squeezing and intermode correlations in laser diodes," Phys. Rev. Lett. 75, 4606-4609 (1995).
[CrossRef] [PubMed]

Quantum Semiclassic. Opt. (1)

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, "Quantum noise of free-running and externally-stabilized laser diodes," Quantum Semiclassic. Opt. 7, 601-613 (1995).
[CrossRef]

Rev. Sci. Instrum. (1)

C. E. Wieman and L. Hollberg, "Using diode lasers for atomic physics," Rev. Sci. Instrum. 62, 1-20 (1991).
[CrossRef]

Other (1)

The authors of Ref. have agreed with the following corrections to that paper: (1) The field operators (âf and âi) in the last term on the right side of the first two equations should not appear; (2) in Eqs. , G should be G̃, or G/N; and (3) the expression for the output noise of the injected laser is not correct, having been obtained from a wrong definition of the output amplitude quadrature. A more rigorous derivation of the noise terms can be found in T. C. Ralph, in Quantum Squeezing, P.D.Drummond and Z.Ficek, eds. (Springer-Verlag, 2004), pp. 141-170.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of the injection-locking experiment. O.I. = optical isolator, L.O. = local oscillator, PZT = piezoelectric transducer, F.P. = fast photodiode, L.P. = low - pass filter, S.L. = servo loop electronics, O.C. = output coupler. Radiation fields are also indicated (see the text). Energy levels of the Ti:S active medium are shown in the inset.

Fig. 2
Fig. 2

Free-running Ti:S amplitude noise V free for V Pump = 40 dB and different levels of pump power P Pump : (i) P Pump = 0.5 W , (ii) P Pump = 5 W , (iii) P Pump = 30 W . Other parameters are P threshold = 300 mW , G = 1.0 × 10 5 Hz , γ t = 3.17 × 10 5 Hz , 2 k m = 12 MHz , 2 k = 17 MHz , N = 1.5 × 10 15 atoms.

Fig. 3
Fig. 3

Ti:S amplitude noise in the free-running case for a strongly squeezed pump noise V Pump = 10 dB for different values of the pump power. (i) P Pump = 0.5 W , (ii) P Pump = 2 W , (iii) P Pump = 8 W . Other parameters are the same as in Fig. 2.

Fig. 4
Fig. 4

Injection-locked Ti:S amplitude noise V out at null detuning ( Δ = 0 ) , calculated for P Pump = 1 W , P m = 25 mW , P Pump = 40 dB . Other parameters are the same as in Fig. 2. Curves correspond to different values of master noise V m : (i) V m = 10 dB (squeezed), (ii) V M = 0 dB (QNL), (iii) V m = 10 dB . In the high-frequency region, V out V m .

Fig. 5
Fig. 5

Injection-locked Ti:S amplitude noise V out when operation is at P Pump = 1 W , P M = 25 mW , V Pump = 40 dB , V m = 0 dB . Other parameters are the same as in Fig. 2. Curves correspond to different values of the optical detuning Δ: (i) Δ = 0 Hz , (ii) Δ = 50 kHz , (iii) Δ = 200 kHz , (iv) Δ = 400 kHz . The conversion of the master laser phase noise into injection-locked laser amplitude noise can be observed. Master phase noise is given by expression (25).

Fig. 6
Fig. 6

Sketch of the slave laser system.

Fig. 7
Fig. 7

Lateral view of the laser case structure.

Fig. 8
Fig. 8

Pound-Drever-Hall error signals versus detuning Δ, recorded by scanning the Ti:S cavity PZT for increasing values of Ti:S pump power P Pump . The master laser power is about 20 mW . (a) Pump laser off. (b) P Pump = 200 mW (below laser threshold). (c) P Pump = 4 W (above laser threshold). The horizontal axes have arbitrary offsets.

Fig. 9
Fig. 9

Frequency scans of injection-locked Ti:S laser for pump power P Pump = 5 W and output power P out = 0.9 W . Open squares, maximum scan; closed circles, scan velocity.

Fig. 10
Fig. 10

Amplitude noise normalized to the QNL for the Ti:S free-running laser output, corresponding to a pump power of 700 mW . The spectrum is recorded on an attenuated beam with a total quantum efficiency of η = 2.5 % and corrected for this efficiency to be referred to the laser output. Noise peaks labeled from (i) to (v) are due to the pump laser, as shown in Fig. 11.

Fig. 11
Fig. 11

Amplitude noise normalized to the QNL for the pump light ( 532 nm ) absorbed by crystal. Corresponding power entering in the laser cavity is 700 mW . Noise peaks labeled from (i) to (v) also appear in the free-running Ti:S laser spectrum reported in Fig. 10.

Fig. 12
Fig. 12

Amplitude noise normalized to the QNL for the Ti:S laser injection locked to the diode laser. Experimental parameters are pump power 1.2 W , injected power 30 mW , output power 170 mW . The spectra are recorded on an attenuated beam with a total quantum efficiency of η = 4 % and corrected for this efficiency to be referred to the laser output. The peak at 12.1 MHz corresponds to the master laser current modulation used for the Pound–Drever locking. (a) Measurement corresponding to the maximum gain of the electronic locking between the master laser and the slave laser cavity. (b) Measurement corresponding to an electronic locking with lower loop gain.

Fig. 13
Fig. 13

Amplitude noise of the master semiconductor laser (solid curve), together with its shot-noise level (dotted curve), measured with a balanced detection.

Fig. 14
Fig. 14

Master laser phase-noise spectrum V Phase . Measurements (dots) are performed by our detecting the beam reflected by the cold cavity. The slope of the straight line is 20 dB /decade (expected phase-noise decay). In the inset is reported the master noise V m versus detuning frequency Δ, at the fixed detection frequency of 30 MHz . The extracted information is the phase-noise level V q . Δ values corresponding to phase quadrature observation are of the order of the cavity half-linewidth. Measurements are corrected for the detection quantum efficiency of η = 6 % .

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

a ̂ ̇ f = G 2 N σ ̂ 3 a ̂ f k a ̂ f + 2 k m A ̂ m + 2 k l A ̂ l 1 2 G N σ ̂ 3 ( 1 + i ) ( δ C ̂ P f + δ C ̂ P f ) ,
a ̂ ̇ = G 2 N σ ̂ 3 a ̂ i ( k + i Δ ) a ̂ i + 2 k m A ̂ m + 2 k l A ̂ l 1 2 G N σ ̂ 3 ( 1 + i ) ( δ C ̂ P i + δ C ̂ P i ) ,
σ ̂ ̇ 3 = G N σ ̂ 3 ( a ̂ i a ̂ i + a ̂ f a ̂ f ) γ t σ ̂ 3 + θ ( N I ̂ σ ̂ 3 ) B ̂ B ̂ + γ t σ ̂ 3 δ C ̂ t δ C ̂ t + θ ( N I ̂ σ ̂ 3 ) [ ( 1 θ ) ( N I ̂ σ ̂ 3 ) ] B ̂ ( δ C ̂ f + δ C ̂ f ) + G N a ̂ f a ̂ f σ ̂ 3 ( δ C ̂ P f + δ C ̂ P f ) + G N a ̂ i a ̂ i σ ̂ 3 ( δ C ̂ P i + δ C ̂ P i ) .
A ̂ out = 2 k m ( a ̂ f + a ̂ i ) A ̂ m .
a ̂ f N α f + δ a ̂ f ,
a ̂ i N α i exp ( i ϕ ) + δ a ̂ i ,
A ̂ m , l N A m , l + δ A ̂ m , l ,
σ ̂ 3 N J 3 + δ σ ̂ 3 ,
B ̂ N B + δ B ̂ ,
α ̇ f = ( G 2 J 3 k ) α f ,
α ̇ i = ( G 2 J 3 k ) α i + 2 k m A m cos ϕ ,
ϕ ̇ = Δ 2 k m A m α i sin ϕ ,
J ̇ 3 = G J 3 ( α i 2 + α f 2 ) ( γ t + Γ ) J 3 + Γ ,
α f 2 = Γ ( G 2 k ) 2 k γ t 2 k G α 2 ,
J 3 = 2 k G J .
Δ l = 2 k m A m α = 2 k m P m P free ,
ϕ arcsin ( Δ Δ l ) Φ ,
α i 2 α 2 ,
J 3 J ,
Γ th = 2 k γ t G 2 k ( threshold pump rate ) ,
Ω RO 2 = G 2 J α 2 = 2 k γ t ( μ 1 ) ( relaxation oscillation resonance frequency ) ,
γ L = Γ + γ t + G α 2 = μ ( γ t + Γ th ) ( damping constant ) ,
δ X ̂ ̇ a i = Δ l cos Φ δ X ̂ a i i Δ δ X ̂ a i + G α cos Φ δ σ ̂ 3 + 2 k m δ X ̂ A m + 2 k l δ X ̂ A l G J δ X ̂ C P i ( cos Φ sin Φ ) ,
δ X ̂ ̇ a i = i Δ δ X ̂ a i Δ l cos Φ δ ̇ X ̂ a i + i G α sin Φ δ σ ̂ 3 + 2 k m δ X ̂ A m + 2 k l δ X ̂ A l G J δ X ̂ C P i ( cos Φ + sin Φ ) ,
δ σ ̂ ̇ 3 = G J α cos Φ δ X ̂ a i + i G J α sin Φ δ X ̂ a i γ L δ σ ̂ 3 + Γ ( 1 J ) δ X ̂ B + γ t J δ C ̂ t δ C ̂ t + G J α δ X ̂ C P i .
δ X out = 2 k m δ X a i δ X A m ,
δ X out = 2 k m δ X a i δ X A m ,
δ X out = ( i ω Δ l cos Φ + Ω RO 2 i ω γ L + Δ l 2 sin 2 Φ i ω Δ l cos Φ ) 1 ( { 2 k m [ 1 + Ω RO 2 sin 2 Φ ( i ω γ L ) ( i ω Δ l cos Φ ) ] + i ω Δ l cos Φ + Ω RO 2 i ω γ L + Δ l 2 sin 2 Φ i ω Δ l cos Φ } δ X A m i [ 2 k m Δ l sin Φ ( i ω γ L ) + Ω RO 2 cos Φ sin Φ ( i ω γ L ) ( i ω Δ l cos Φ ) ] δ X A m 4 k m k l { [ 1 + Ω RO 2 sin 2 Φ ( i ω γ L ) ( i ω Δ l cos Φ ) ] δ X A l + i [ Δ l sin Φ ( i ω γ L ) + Ω RO 2 cos Φ sin Φ ( i ω γ L ) ( i ω Δ l cos Φ ) ] } δ X A l + i G α i ω γ L ( cos Φ Δ l sin 2 Φ i ω Δ l cos Φ ) [ 2 k m Γ ( 1 J ) δ X B + 2 k m γ t J δ C t δ C t ] + 2 k m G J [ ( G α 2 i ω γ L + 1 ) ( 1 Δ l sin 2 Φ i ω Δ l cos Φ ) sin Φ Δ l sin Φ cos Φ i ω Δ l cos Φ Ω RO 2 sin Φ ( i ω γ L ) ( i ω Δ l cos Φ ) ] δ X C p i ) ,
δ X out = ( i ω Δ l cos Φ + Ω RO 2 i ω γ L + Δ l 2 sin 2 Φ i ω Δ l cos Φ ) 1 ( { 2 k m [ 1 + Ω RO 2 cos 2 Φ ( i ω γ L ) ( i ω Δ l cos Φ ) ] + i ω Δ l cos Φ + Ω RO 2 i ω γ L + Δ l 2 sin 2 Φ i ω Δ l cos Φ } δ X A m i [ 2 k m Δ l sin Φ ( i ω γ L ) Ω RO 2 cos Φ sin Φ ( i ω γ L ) ( i ω Δ l cos Φ ) ] δ X A m 4 k m k l { [ 1 + Ω RO 2 cos 2 Φ ( i ω γ L ) ( i ω Δ l cos Φ ) ] δ X A l + i [ Δ l sin Φ ( i ω γ L ) + Ω RO 2 cos Φ sin Φ ( i ω γ L ) ( i ω Δ l cos Φ ) ] } δ X A l + i G α i ω γ L ( sin Φ Δ l sin Φ cos Φ i ω Δ l cos Φ ) [ 2 k m Γ ( 1 J ) δ X B + 2 k m γ t J δ C t δ C t ] + i 2 k m G J [ ( G α 2 i ω γ L + 1 ) ( 1 + Δ l sin Φ cos Φ i ω Δ l cos Φ ) + cos Φ Δ l sin 2 Φ i ω Δ l cos Φ + Ω RO 2 cos Φ ( i ω γ L ) ( i ω Δ l cos Φ ) ] δ X C p i ) .
δ N out = A out ( δ X out cos Φ out i δ X out sin Φ out ) ,
Φ out = arctan ( sin Φ cos Φ + Δ l 2 k m ) .
V out = ( δ N out ) 2 A out 2 .
V out ( i ω Δ l cos Φ + Ω RO 2 i ω γ L + Δ l 2 sin 2 Φ i ω Δ l cos Φ 2 ) 1 × { ( 2 k m + i ω Δ l cos Φ + Ω RO 2 i ω γ L + Δ l 2 sin 2 Φ i ω Δ l cos Φ ) cos Φ + 2 k m Δ l sin 2 Φ i ω Δ l cos Φ 2 V m + ( 2 k m + i ω Δ l cos Φ + Ω RO 2 i ω γ L + Δ l 2 sin 2 Φ i ω Δ l cos Φ ) sin Φ 2 k m Δ l sin Φ cos Φ i ω Δ l cos Φ 2 V m + 2 k m ( Γ Γ th ) γ t Ω RO 2 ω 2 + γ L 2 V Pump + 2 k m γ t Ω RO 2 ω 2 + γ L 2 + 4 k m k l cos Φ + Δ l sin 2 Φ i ω Δ l cos Φ + i ( sin Φ + Δ l sin Φ cos Φ i ω Δ l cos Φ ) 2 + 4 k m k [ i ω ( Γ + γ t ) ] ( cos Φ + sin Φ ) Δ l sin Φ i ω Δ l cos Φ 2 } ,
δ A ̂ m = δ A ̂ vac .
V free = 1 + 1 ( Ω RO 2 ω 2 ) 2 + ω 2 γ L 2 { 4 k m 2 ( ω 2 + γ L 2 ) 4 k m Ω RO 2 γ L + 2 k m γ t Ω RO 2 ( Γ Γ th ) V Pump + 2 k m γ t Ω RO 2 + 4 k m k [ ( ω 2 ) + ( Γ + γ t ) 2 ] + 4 k m k l ( γ L 2 + ω 2 ) } .
V out Δ = 0 = V m + 1 [ ( Ω RO l 2 ω 2 ) 2 + ω 2 γ L l 2 ] { 4 k m 2 ( ω 2 + γ L 2 ) V m 4 k m ( Ω RO l 2 γ L + ω 2 Δ l ) V m + 2 k m γ t Ω RO 2 ( Γ Γ th ) V Pump + 2 k m γ t Ω RO 2 + 4 k m k [ ( γ t + Γ ) 2 + ω 2 ] + 4 k m k l ( γ L 2 + ω 2 ) } ,
V m = 1 + V 0 ν 2 ,
2 k = ( 2 π ν r ) 2 γ t ( μ 1 ) ,

Metrics