Abstract

We present an experimental and theoretical study of a highly robust wavelength converter at 10Gbits that is based on a narrow bandstop Brillouin filter. The wavelength conversion takes place in a semiconductor optical amplifier in a cross-gain–phase process, which operates in a weak-modulation mode. The signal then undergoes a carrier reduction by a spectrally narrow bandstop filter. Since we use a Brillouin grating as the narrow filter, the signal is distorted owing to the filter’s finite spectral width (20MHz). To overcome this problem, we use a relatively slow electronic mechanism to effectively narrow the filter’s spectral width and to improve its signal-to-noise ratio. We elaborate on this electronic mechanism by developing the underlying theory and showing how it is implemented in practice. Although we focus on an application for wavelength conversion, this technology can be implemented in many other cases in which an effective narrowing of a bandstop filter is required.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, and K. Wünsel, "10Gb/s wavelength conversion with integrated multiquantum-well based 3-port Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 8, 1163-1165 (1996).
    [CrossRef]
  2. J.-Y. Emery, M. Picq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, and A. Dupas, "Optimized 2-R all-optical regenerator with low polarization sensitivity penalty (<1dB) for optical networking applications," in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper MB4-1.
  3. J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, "100Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration," Electron. Lett. 36, 1129-1130 (2000).
    [CrossRef]
  4. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  5. H.-Y. Yu, D. Mahgerefteh, P. S. Cho, and J. Goldhar, "Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating," J. Lightwave Technol. 17, 308-315 (1999).
    [CrossRef]
  6. G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
    [CrossRef]
  7. E. Granot, S. Sternklar, H. Chayet, S. Ben-Ezra, N. Narkiss, N. Shahar, A. Sher, and S. Tsadka, "10Gbit/s optical wavelength converter with a Brillouin scattering-based spectral filter," Appl. Opt. 44, 4959-4964 (2005).
    [CrossRef] [PubMed]
  8. R. D. Esman and K. J. Williams, "Wideband efficiency improvement of fiber optic systems by carrier subtraction," IEEE Photon. Technol. Lett. 7, 218-220 (1995).
    [CrossRef]
  9. A. Loayssa, D. Benito, and M. J. Garde, "Optical carrier Brillouin processing of microwave photonic signals," Opt. Lett. 25, 1234-1236 (2000).
    [CrossRef]
  10. D. L. Bulter, J. S. Wey, M. W. Chbat, L. Burdge, and J. Goldhar, "Optical clock recovery from a data stream of an arbitrary bit rate by use of stimulated Brillouin scattering," Opt. Lett. 20, 560-562 (1995).
    [CrossRef]
  11. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  12. See, for example, A. Yariv, Optical Electronics, 3rd ed. (Saunders, 1991).

2005 (1)

2000 (2)

A. Loayssa, D. Benito, and M. J. Garde, "Optical carrier Brillouin processing of microwave photonic signals," Opt. Lett. 25, 1234-1236 (2000).
[CrossRef]

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, "100Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration," Electron. Lett. 36, 1129-1130 (2000).
[CrossRef]

1999 (1)

1997 (1)

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

1996 (1)

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, and K. Wünsel, "10Gb/s wavelength conversion with integrated multiquantum-well based 3-port Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 8, 1163-1165 (1996).
[CrossRef]

1995 (2)

R. D. Esman and K. J. Williams, "Wideband efficiency improvement of fiber optic systems by carrier subtraction," IEEE Photon. Technol. Lett. 7, 218-220 (1995).
[CrossRef]

D. L. Bulter, J. S. Wey, M. W. Chbat, L. Burdge, and J. Goldhar, "Optical clock recovery from a data stream of an arbitrary bit rate by use of stimulated Brillouin scattering," Opt. Lett. 20, 560-562 (1995).
[CrossRef]

1989 (1)

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

Ben-Ezra, S.

Benito, D.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Brenot, R.

J.-Y. Emery, M. Picq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, and A. Dupas, "Optimized 2-R all-optical regenerator with low polarization sensitivity penalty (<1dB) for optical networking applications," in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper MB4-1.

Bulter, D. L.

Burdge, L.

Burrus, C. A.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, "100Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration," Electron. Lett. 36, 1129-1130 (2000).
[CrossRef]

Chayet, H.

Chbat, M. W.

Cho, P. S.

Daub, K.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, and K. Wünsel, "10Gb/s wavelength conversion with integrated multiquantum-well based 3-port Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 8, 1163-1165 (1996).
[CrossRef]

Dreyer, K.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, "100Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration," Electron. Lett. 36, 1129-1130 (2000).
[CrossRef]

Dupas, A.

J.-Y. Emery, M. Picq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, and A. Dupas, "Optimized 2-R all-optical regenerator with low polarization sensitivity penalty (<1dB) for optical networking applications," in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper MB4-1.

Dütting, K.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, and K. Wünsel, "10Gb/s wavelength conversion with integrated multiquantum-well based 3-port Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 8, 1163-1165 (1996).
[CrossRef]

Emery, J.-Y.

J.-Y. Emery, M. Picq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, and A. Dupas, "Optimized 2-R all-optical regenerator with low polarization sensitivity penalty (<1dB) for optical networking applications," in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper MB4-1.

Erdogan, T.

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

Esman, R. D.

R. D. Esman and K. J. Williams, "Wideband efficiency improvement of fiber optic systems by carrier subtraction," IEEE Photon. Technol. Lett. 7, 218-220 (1995).
[CrossRef]

Gaborit, F.

J.-Y. Emery, M. Picq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, and A. Dupas, "Optimized 2-R all-optical regenerator with low polarization sensitivity penalty (<1dB) for optical networking applications," in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper MB4-1.

Garde, M. J.

Goldhar, J.

Granot, E.

Idler, W.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, and K. Wünsel, "10Gb/s wavelength conversion with integrated multiquantum-well based 3-port Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 8, 1163-1165 (1996).
[CrossRef]

Joyner, C. H.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, "100Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration," Electron. Lett. 36, 1129-1130 (2000).
[CrossRef]

Klenk, M.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, and K. Wünsel, "10Gb/s wavelength conversion with integrated multiquantum-well based 3-port Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 8, 1163-1165 (1996).
[CrossRef]

Lach, E.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, and K. Wünsel, "10Gb/s wavelength conversion with integrated multiquantum-well based 3-port Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 8, 1163-1165 (1996).
[CrossRef]

Laube, G.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, and K. Wünsel, "10Gb/s wavelength conversion with integrated multiquantum-well based 3-port Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 8, 1163-1165 (1996).
[CrossRef]

Lavigne, B.

J.-Y. Emery, M. Picq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, and A. Dupas, "Optimized 2-R all-optical regenerator with low polarization sensitivity penalty (<1dB) for optical networking applications," in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper MB4-1.

Leuthold, J.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, "100Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration," Electron. Lett. 36, 1129-1130 (2000).
[CrossRef]

Loayssa, A.

Mahgerefteh, D.

Mikkelsen, B.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, "100Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration," Electron. Lett. 36, 1129-1130 (2000).
[CrossRef]

Miller, B. I.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, "100Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration," Electron. Lett. 36, 1129-1130 (2000).
[CrossRef]

Narkiss, N.

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

Picq, M.

J.-Y. Emery, M. Picq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, and A. Dupas, "Optimized 2-R all-optical regenerator with low polarization sensitivity penalty (<1dB) for optical networking applications," in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper MB4-1.

Pleumeekers, J. L.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, "100Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration," Electron. Lett. 36, 1129-1130 (2000).
[CrossRef]

Poingt, F.

J.-Y. Emery, M. Picq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, and A. Dupas, "Optimized 2-R all-optical regenerator with low polarization sensitivity penalty (<1dB) for optical networking applications," in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper MB4-1.

Raybon, G.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, "100Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration," Electron. Lett. 36, 1129-1130 (2000).
[CrossRef]

Renaud, M.

J.-Y. Emery, M. Picq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, and A. Dupas, "Optimized 2-R all-optical regenerator with low polarization sensitivity penalty (<1dB) for optical networking applications," in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper MB4-1.

Schilling, M.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, and K. Wünsel, "10Gb/s wavelength conversion with integrated multiquantum-well based 3-port Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 8, 1163-1165 (1996).
[CrossRef]

Shahar, N.

Sher, A.

Sternklar, S.

Tsadka, S.

Wey, J. S.

Wiedemann, P.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, and K. Wünsel, "10Gb/s wavelength conversion with integrated multiquantum-well based 3-port Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 8, 1163-1165 (1996).
[CrossRef]

Williams, K. J.

R. D. Esman and K. J. Williams, "Wideband efficiency improvement of fiber optic systems by carrier subtraction," IEEE Photon. Technol. Lett. 7, 218-220 (1995).
[CrossRef]

Wünsel, K.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, and K. Wünsel, "10Gb/s wavelength conversion with integrated multiquantum-well based 3-port Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 8, 1163-1165 (1996).
[CrossRef]

Yariv, A.

See, for example, A. Yariv, Optical Electronics, 3rd ed. (Saunders, 1991).

Yu, H.-Y.

Appl. Opt. (1)

Electron. Lett. (1)

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, "100Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration," Electron. Lett. 36, 1129-1130 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. D. Esman and K. J. Williams, "Wideband efficiency improvement of fiber optic systems by carrier subtraction," IEEE Photon. Technol. Lett. 7, 218-220 (1995).
[CrossRef]

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, and K. Wünsel, "10Gb/s wavelength conversion with integrated multiquantum-well based 3-port Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 8, 1163-1165 (1996).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Lett. (2)

Other (3)

J.-Y. Emery, M. Picq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, and A. Dupas, "Optimized 2-R all-optical regenerator with low polarization sensitivity penalty (<1dB) for optical networking applications," in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), paper MB4-1.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

See, for example, A. Yariv, Optical Electronics, 3rd ed. (Saunders, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic presentation of the cross gain/phase converted signal. The incident field amplitude is A in ( t ) = I in ( t ) , and the SOA’s output field is A ( t ) exp [ i φ ( t ) ] .

Fig. 2
Fig. 2

System schematic. The compensator is the electronic mechanism that compensates for the filter’s finite SW (described in Fig. 5).

Fig. 3
Fig. 3

Compensation mechanism (the compensator). A portion of the incident signal is converted into an electronic signal with an optical detector. This electronic signal, after passing through an integrator, is used to modulate a cw source laser (idler), which is used to control the SOA’s gain.

Fig. 4
Fig. 4

At the maxima it is important to minimize nonuniformity, but it is less important to be accurate about the dc reduction. At the minima it is important to reduce the dc as accurately as possible, and it is less important to prevent nonuniformity (i.e., to determine large averaging time).

Fig. 5
Fig. 5

Experimental results of the compensation mechanism. The upper panel displays the SOA’s output signal, the center panel is the signal that exits the filter (without the compensation device), and the lower panel is the resulting signal with the compensation mechanism with a much higher bit uniformity.

Fig. 6
Fig. 6

Experimental results of the compensation mechanism for a 50 MHz signal. The upper panel displays the SOA’s output signal, the center panel is the signal that exits the filter (without electronic compensation), and the lower panel is the resulting signal with the compensation mechanism with fewer distortions and higher ER.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

E out ( t ) = A ( t ) exp [ i φ ( t ) ] ,
A ( t ) A max + α I in ( t ) ,
φ ( t ) φ 0 + β I in ( t ) ,
E con ( t ) = A ( t ) exp [ i φ ( t ) ] A max exp ( i φ 0 ) ,
η = 1 A max exp ( i φ 0 ) A ( t ) exp [ i φ ( t ) ] ,
d φ p d z = 1 2 q g 1 + q 2 I s ,
E in ( t ) = ϵ in ( t ) exp ( i ω 2 t ) .
H ( ω ) = 1 d 1 + i ( ω ω c ) Δ ,
h ( t ) = δ ( t ) d Δ exp ( t Δ + i ω c t ) θ ( t ) ,
θ ( t ) = { 1 t > 0 0 t 0 }
E out ( t ) = d t E in ( t t ) h ( t ) ,
E out ( t ) = E in ( t ) d Δ 0 d t E in ( t t ) exp ( t Δ + i ω c t ) .
E out ( t ) = E in ( t ) C ,
E out ( t ) = E in ( t ) C [ I in ( t ) ]
E g ( t ) = E in ( t ) exp [ g ( t ) ] ,
E out ( t ) = exp [ g ( t ) ] E in ( t ) d Δ 0 d t E in ( t t ) exp [ g ( t t ) ] exp ( t Δ + i ω c t ) .
g ( t t ) g ( t ) g ( t ) t ,
E out ( t ) = exp [ g ( t ) ] E in ( t ) d Δ exp [ g ( t ) ] 0 d t E in ( t t ) exp { t [ Δ + g ( t ) ] + i ω c t } .
ϵ out ( t ) = exp [ g ( t ) ] ϵ in ( t ) d Δ exp [ g ( t ) ] 0 d t ϵ in ( t t ) exp { t [ Δ + g ( t ) ] + i δ t } ,
g ( t ) = g = const. ,
g ( t ) = Δ .
g ( t ) = G T t d t exp ( t t T ) E in 2 ,
lim T g ( t ) = g = const. ,
g ( t ) = ( G T ) E in 2 g ( t ) T .
g ( t max m ) g max = const .
ϵ out ( t max m ) = exp [ g ( t ) ] { ϵ in ( t max m ) d Δ 0 d t exp [ t ( Δ + g max ) + i δ t ] ϵ in ( t max m t ) } ,
ϵ out ( t max m ) = e g [ ϵ in ( t max m ) + d Δ Δ + g max ϵ in exp ( i δ t ) max ] ,
ϵ out ( t min m ) = e g [ ϵ in ( t min m ) + d Δ Δ + g min ϵ in exp ( i δ t ) min ]
ϵ in ( t min m ) ϵ in exp ( i δ t ) = d Δ Δ + g min ,
g max Δ .

Metrics