Abstract

Submillimeter-scale dispersion micromanagement (DMM) is discussed and used to generate coherent and stable femtosecond visible pulses (bandwidth up to 50nm and scalable center wavelength in the range of 385625nm) in tapered holey fibers as short as 10mm. The longitudinal variation of the phase-matching conditions for Cherenkov radiation and four-wave mixing explains the results well. We compare the broadband noise of the visible pulses generated through a DMM holey fiber, a tapered fiber, and long holey fibers and find that DMM holey fibers offer the lowest noise for visible pulse generation. We discuss the importance of the distance scale of the DMM and show ultrabroadband visible pulse (180nm) generation by submillimeter-scale DMM, which can be compressed to a 11fs duration. We further apply DMM to polarization-maintaining holey fibers and show different center-wavelength visible pulse generation by changing the input polarization. With DMM flexibility, a strong f-2f beat signal for carrier-envelope phase stabilization is obtained by simply mixing the visible pulse generated by a DMM holey fiber with the second harmonic of the input pulse.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [Crossref]
  2. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    [Crossref]
  3. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
    [Crossref] [PubMed]
  4. A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
    [Crossref] [PubMed]
  5. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2004).
    [Crossref] [PubMed]
  6. M. A. Foster and A. L. Gaeta, "Ultra-low threshold supercontinuum generation in sub-wavelength waveguides," Opt. Express 12, 3137-3143 (2004).
    [Crossref] [PubMed]
  7. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
    [Crossref] [PubMed]
  8. F. Lu, Y. Deng, and W. H. Knox, "Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005).
    [Crossref] [PubMed]
  9. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. St. J. Russell, "Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers," Opt. Lett. 26, 1137-1139 (2001).
    [Crossref]
  10. E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, "Tapered photonic crystal fibers," Opt. Express 12, 776-784 (2004).
    [Crossref] [PubMed]
  11. F. Lu, L. E. Foulkrod, and W. H. Knox, "Intense blue continuum generation in a short dispersion micro-managed tapered holey fiber," in Digest of Meeting on Nonlinear Optics (Optical Society of America, 2004), postdeadline paper PD1.
  12. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [Crossref] [PubMed]
  13. F. Lu and W. H. Knox, "Generation of a broadband continuum with high spectral coherence in tapered fibers," Opt. Express 12, 347-353 (2004).
    [Crossref] [PubMed]
  14. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, R. Trebino, S. Coen, and R. S. Windeler, "Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments," Opt. Express 10, 1215-1221 (2002).
    [PubMed]
  15. J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
    [Crossref]
  16. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
    [Crossref] [PubMed]
  17. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
    [Crossref] [PubMed]
  18. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003).
    [Crossref] [PubMed]
  19. G. McConnell, "Confocal laser scanning fluorescence microscopy with a visible continuum source," Opt. Express 12, 2844-2850 (2004).
    [Crossref] [PubMed]
  20. J. A. Palero, V. O. Boer, J. C. Vijverberg, and H. C. Gerritsen, "Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source," Opt. Express 13, 5363-5368 (2005).
    [Crossref] [PubMed]
  21. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2004).
    [Crossref] [PubMed]
  22. H. N. Paulsen, K. M. Hilligse, J. Thgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber-based light source," Opt. Lett. 28, 1123-1125 (2003).
    [Crossref] [PubMed]
  23. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
    [Crossref]
  24. S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
    [Crossref] [PubMed]

2005 (2)

2004 (6)

2003 (6)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003).
[Crossref] [PubMed]

H. N. Paulsen, K. M. Hilligse, J. Thgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber-based light source," Opt. Lett. 28, 1123-1125 (2003).
[Crossref] [PubMed]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
[Crossref] [PubMed]

2002 (2)

2001 (3)

2000 (4)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[Crossref] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[Crossref]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
[Crossref]

Biancalana, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[Crossref] [PubMed]

Birks, T. A.

Boer, V. O.

Chudoba, C.

Coen, S.

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003).
[Crossref] [PubMed]

Cristiani, I.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[Crossref] [PubMed]

Cundiff, T.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[Crossref] [PubMed]

Degiorgio, V.

Deng, Y.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[Crossref] [PubMed]

Dimmick, T. E.

Dudley, J. M.

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[Crossref] [PubMed]

Eggleton, B. J.

Foster, M. A.

Foulkrod, L. E.

F. Lu, L. E. Foulkrod, and W. H. Knox, "Intense blue continuum generation in a short dispersion micro-managed tapered holey fiber," in Digest of Meeting on Nonlinear Optics (Optical Society of America, 2004), postdeadline paper PD1.

Fujimoto, J. G.

Gaeta, A. L.

Gerritsen, H. C.

Ghanta, R. K.

Gu, X.

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[Crossref] [PubMed]

Hansch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[Crossref] [PubMed]

Hartl, I.

Herrmann, J.

A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

Hilligse, K. M.

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[Crossref] [PubMed]

Husakou, A. V.

A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[Crossref] [PubMed]

Kakarantzas, G.

Keiding, S. R.

Kimmel, M.

Knight, J. C.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[Crossref] [PubMed]

Knox, W. H.

F. Lu, Y. Deng, and W. H. Knox, "Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005).
[Crossref] [PubMed]

F. Lu and W. H. Knox, "Generation of a broadband continuum with high spectral coherence in tapered fibers," Opt. Express 12, 347-353 (2004).
[Crossref] [PubMed]

F. Lu, L. E. Foulkrod, and W. H. Knox, "Intense blue continuum generation in a short dispersion micro-managed tapered holey fiber," in Digest of Meeting on Nonlinear Optics (Optical Society of America, 2004), postdeadline paper PD1.

Ko, T. H.

Larsen, J. J.

Le Roux, R.

Li, X. D.

Lu, F.

F. Lu, Y. Deng, and W. H. Knox, "Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005).
[Crossref] [PubMed]

F. Lu and W. H. Knox, "Generation of a broadband continuum with high spectral coherence in tapered fibers," Opt. Express 12, 347-353 (2004).
[Crossref] [PubMed]

F. Lu, L. E. Foulkrod, and W. H. Knox, "Intense blue continuum generation in a short dispersion micro-managed tapered holey fiber," in Digest of Meeting on Nonlinear Optics (Optical Society of America, 2004), postdeadline paper PD1.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[Crossref] [PubMed]

Mägi, E. C.

McConnell, G.

Newbury, N. R.

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Omenetto, F. G.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[Crossref] [PubMed]

O'Shea, P.

Palero, J. A.

Paulsen, H. N.

Ranka, J. K.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[Crossref]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[Crossref] [PubMed]

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[Crossref] [PubMed]

Russell, P. St. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[Crossref] [PubMed]

G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. St. J. Russell, "Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers," Opt. Lett. 26, 1137-1139 (2001).
[Crossref]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
[Crossref]

Shreenath, A. P.

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[Crossref] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[Crossref] [PubMed]

Steinvurzel, P.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[Crossref] [PubMed]

Stentz, A. J.

Tartara, L.

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[Crossref] [PubMed]

Tediosi, R.

Thgersen, J.

Trebino, R.

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[Crossref] [PubMed]

Vijverberg, J. C.

Wadsworth, W. J.

Washburn, B. R.

Webber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003).
[Crossref] [PubMed]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
[Crossref] [PubMed]

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, R. Trebino, S. Coen, and R. S. Windeler, "Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments," Opt. Express 10, 1215-1221 (2002).
[PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[Crossref]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[Crossref] [PubMed]

Xu, L.

Ye, J.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[Crossref] [PubMed]

Zeek, E.

Nature (1)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[Crossref] [PubMed]

Opt. Express (9)

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2004).
[Crossref] [PubMed]

M. A. Foster and A. L. Gaeta, "Ultra-low threshold supercontinuum generation in sub-wavelength waveguides," Opt. Express 12, 3137-3143 (2004).
[Crossref] [PubMed]

E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, "Tapered photonic crystal fibers," Opt. Express 12, 776-784 (2004).
[Crossref] [PubMed]

F. Lu and W. H. Knox, "Generation of a broadband continuum with high spectral coherence in tapered fibers," Opt. Express 12, 347-353 (2004).
[Crossref] [PubMed]

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, R. Trebino, S. Coen, and R. S. Windeler, "Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments," Opt. Express 10, 1215-1221 (2002).
[PubMed]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
[Crossref] [PubMed]

G. McConnell, "Confocal laser scanning fluorescence microscopy with a visible continuum source," Opt. Express 12, 2844-2850 (2004).
[Crossref] [PubMed]

J. A. Palero, V. O. Boer, J. C. Vijverberg, and H. C. Gerritsen, "Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source," Opt. Express 13, 5363-5368 (2005).
[Crossref] [PubMed]

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2004).
[Crossref] [PubMed]

Opt. Lett. (8)

H. N. Paulsen, K. M. Hilligse, J. Thgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber-based light source," Opt. Lett. 28, 1123-1125 (2003).
[Crossref] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[Crossref]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003).
[Crossref] [PubMed]

J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
[Crossref]

F. Lu, Y. Deng, and W. H. Knox, "Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005).
[Crossref] [PubMed]

G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. St. J. Russell, "Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers," Opt. Lett. 26, 1137-1139 (2001).
[Crossref]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[Crossref]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
[Crossref]

Phys. Rev. Lett. (3)

A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[Crossref] [PubMed]

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[Crossref] [PubMed]

Other (1)

F. Lu, L. E. Foulkrod, and W. H. Knox, "Intense blue continuum generation in a short dispersion micro-managed tapered holey fiber," in Digest of Meeting on Nonlinear Optics (Optical Society of America, 2004), postdeadline paper PD1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Measured core diameter profile for the DMM HF with a 10 mm fiber length. Inset: input surface image for the HF. (b) Group-velocity dispersion (GVD) curves for HF groups with core diameters of 3.3, 2.6, 2.2, 1.8, and 1.45 μ m (from right to left). (c) Group-velocity curves for the above HF groups. For a 1.45 μ m diameter HF, the wavelengths that fulfill FWM conditions are indicated with arrows; ω a , anti-Stokes; ω p , pump; ω s , Stokes. (d) Curves of phase mismatch Δ β between a Raman-shifted soliton and CR for the above HF groups.

Fig. 2
Fig. 2

(a) Spectrum of the continuum with blue-violet ASR generated through 10 mm DMM HF with 880 nm λ input . Insets: left, the ASR spectrum on a linear scale; right, XFROG trace of the ASR; upper, mutual spectral interference pattern. (b) Spectrum of the continuum generated through a 10 mm long constant diameter ( 3.3 μ m ) HF with the same input condition as (a). (c) The continuum spectrum for the second DMM HF, showing a strong ASR centered at 538 nm . Inset: theoretical calculation estimating ASR centered at 528 nm . (d) Mutual spectral interference measurement of the green pulse showing high coherence > 90 % . Inset: autocorrelation measurement showing 70 fs pulse width.

Fig. 3
Fig. 3

Measured spectra of the center-wavelength scalable ASRs from 385 to 625 nm generated with different DMM schemes. Right, color pictures from the output end of the DMM fibers.

Fig. 4
Fig. 4

(a) Spectral components filtered out for the ASRs generated through three methods: DMM HFs, a tapered fiber, and the constant diameter HF. The filter is centered at 535, 580, and 620 nm with 25 nm bandwidth. (b) Measured broadband noise comparisons for filtered-out ASRs (generated through three methods) centered at 535 nm . (c) Comparisons of broadband noises above the background for filtered-out ASRs centered at 535, 580, and 620 nm generated through the three methods.

Fig. 5
Fig. 5

(a) Measured spectrum of the continuum generated through a DMM fiber with only a 1 mm DMM part. Inset: schematic for the core diameter of the DMM fiber. (b) Spectral coherence measurement for the ASR part. (c) Autocorrelation trace for the ASR that is compressed down to 11.3 fs .

Fig. 6
Fig. 6

(a) Cross section of the input end of the PM fiber (Crystal Fiber A/S). (b) Generation of two-color ASRs (with 30 nm difference in the center wavelengths) through a DMM PM HF with input light polarized along different principal axis.

Fig. 7
Fig. 7

(a) Spectrum of the continuum generated through a DMM HF that is specifically designed for the f - 2 f beating signal generation. The input pulse is the f n component, and f 2 n is the component centered at the peak position of the ASR. (b) The overlapping spectra of the ASR and the second harmonics of the input pulse. (c) Beat signal generation between ASR and SHG of the input pulses with 37 dB signal-to-noise rates above the averaged noise background. Dashed curve, the averaged noise background; δ, beat signal frequency ( 31 MHz ) ; f, laser repetition rates ( 80 MHz ) .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ β = β ( ω ) β ( ω s ) ω ω s v g γ P s ,

Metrics