Abstract

We present a detailed analysis of potassium–sodium and silver–sodium ion-exchange processes for fabricating waveguides in glass doped with PbS semiconductor quantum dots. We compare the propagation losses of these waveguides, and we discuss the sources of these losses. In addition, we demonstrate a fourfold reduction in the propagation loss previously reported for potassium–sodium ion-exchanged waveguides and show that waveguides can be produced at additional quantum-dot resonances using both methods. We show that the near-infrared optical properties of these quantum dots remain intact by comparing the waveguide and bulk (unguided) luminescence spectra. Measurements of the near-field mode profiles show a high level of field confinement, which make these waveguides ideal for nonlinear optical (high-intensity) applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription