Abstract

Numerical simulations of recombination gain in the LiIII transition to ground state (21 at 13.5nm) are presented. The plasma simulated is a mixture of Li and H ions, and the space–time-dependent gain coefficient is calculated for different mixing ratios and different pumping beam parameters. The numerical model includes the initial optical field ionization of the plasma by an intense 100fs laser pulse, taking into account residual heating, particle collisions, and spatial effects. Gain is then calculated during the process of recombination as the plasma expands and cools. We show that the addition of hydrogen to the plasma can lead to higher gain with a less restrictive range of experimental parameters. We analyze the effects of the addition of hydrogen on the gain and point to the optimal plasma and pump parameters to produce gain.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription