Abstract

We demonstrate upconversion from 1.56to0.633μm that preserves the polarization state of an arbitrarily polarized input. The upconverter uses bidirectional sum-frequency generation in bulk periodically poled lithium niobate and a Michelson interferometer to stabilize the phase.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Shapiro, "Architectures for long-distance quantum teleportation," New J. Phys. 4, 47 (2002).
    [CrossRef]
  2. M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints," Phys. Rev. A 69, 041801(R) (2004).
    [CrossRef]
  3. S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, "Long-distance unconditional teleportation of atomic states via complete Bell state measurements," Phys. Rev. Lett. 87, 167903 (2001).
    [CrossRef] [PubMed]
  4. F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).
    [CrossRef]
  5. J. S. Bell, "On the problem of hidden variables in quantum mechanics," Rev. Mod. Phys. 38, 447-452 (1966).
    [CrossRef]
  6. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
    [CrossRef]
  7. J. C. Boileau, R. Laflamme, M. Laforest, R. C. Myers, "Robust quantum communication using a polarization-entangled photon pair," Phys. Rev. Lett. 93, 220501 (2004).
    [CrossRef] [PubMed]
  8. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug and play system," New J. Phys. 4, 41 (2002).
    [CrossRef]
  9. D. S. Bethune and W. P. Risk, "Autocompensating quantum cryptography," New J. Phys. 4, 42 (2002).
    [CrossRef]
  10. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New J. Phys. 4, 43 (2002).
    [CrossRef]
  11. A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
    [CrossRef] [PubMed]
  12. J. M. Huang and P. Kumar, "Observation of quantum frequency conversion," Phys. Rev. Lett. 68, 2153-2156 (1992).
    [CrossRef] [PubMed]
  13. D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs," J. Mod. Opt. 48, 1967-1981 (2001).
    [CrossRef]
  14. D. S. Bethune, W. P. Risk, and G. W. Pabst, "A high-performance integrated single-photon detector for telecom wavelengths," J. Mod. Opt. 51, 1359-1368 (2004).
  15. M. A. Albota and E. Dauler, "Single photon detection of degenerate photon pairs at 1.55 μm from a periodically poled lithium niobate parametric downconverter," J. Mod. Opt. 51, 1417-1432 (2004).
  16. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
    [CrossRef] [PubMed]
  17. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O'Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, "Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser," Appl. Opt. 41, 7671-7678 (2002).
    [CrossRef]
  18. M. A. Albota and F. N. C. Wong, "Efficient single-photon counting at 1.55 μm by means of frequency upconversion," Opt. Lett. 29, 1449-1451 (2004).
    [CrossRef] [PubMed]
  19. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, "Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths," Opt. Lett. 29, 1518-1520 (2004).
    [CrossRef] [PubMed]
  20. A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 51, 1433-1445 (2004).

2005 (1)

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

2004 (7)

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints," Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

J. C. Boileau, R. Laflamme, M. Laforest, R. C. Myers, "Robust quantum communication using a polarization-entangled photon pair," Phys. Rev. Lett. 93, 220501 (2004).
[CrossRef] [PubMed]

D. S. Bethune, W. P. Risk, and G. W. Pabst, "A high-performance integrated single-photon detector for telecom wavelengths," J. Mod. Opt. 51, 1359-1368 (2004).

M. A. Albota and E. Dauler, "Single photon detection of degenerate photon pairs at 1.55 μm from a periodically poled lithium niobate parametric downconverter," J. Mod. Opt. 51, 1417-1432 (2004).

A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 51, 1433-1445 (2004).

M. A. Albota and F. N. C. Wong, "Efficient single-photon counting at 1.55 μm by means of frequency upconversion," Opt. Lett. 29, 1449-1451 (2004).
[CrossRef] [PubMed]

R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, "Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths," Opt. Lett. 29, 1518-1520 (2004).
[CrossRef] [PubMed]

2002 (5)

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O'Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, "Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser," Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

J. H. Shapiro, "Architectures for long-distance quantum teleportation," New J. Phys. 4, 47 (2002).
[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug and play system," New J. Phys. 4, 41 (2002).
[CrossRef]

D. S. Bethune and W. P. Risk, "Autocompensating quantum cryptography," New J. Phys. 4, 42 (2002).
[CrossRef]

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New J. Phys. 4, 43 (2002).
[CrossRef]

2001 (3)

S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, "Long-distance unconditional teleportation of atomic states via complete Bell state measurements," Phys. Rev. Lett. 87, 167903 (2001).
[CrossRef] [PubMed]

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs," J. Mod. Opt. 48, 1967-1981 (2001).
[CrossRef]

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

1992 (1)

J. M. Huang and P. Kumar, "Observation of quantum frequency conversion," Phys. Rev. Lett. 68, 2153-2156 (1992).
[CrossRef] [PubMed]

1991 (1)

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

1966 (1)

J. S. Bell, "On the problem of hidden variables in quantum mechanics," Rev. Mod. Phys. 38, 447-452 (1966).
[CrossRef]

Albota, M. A.

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

M. A. Albota and E. Dauler, "Single photon detection of degenerate photon pairs at 1.55 μm from a periodically poled lithium niobate parametric downconverter," J. Mod. Opt. 51, 1417-1432 (2004).

M. A. Albota and F. N. C. Wong, "Efficient single-photon counting at 1.55 μm by means of frequency upconversion," Opt. Lett. 29, 1449-1451 (2004).
[CrossRef] [PubMed]

M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O'Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, "Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser," Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

Aull, B. F.

Bell, J. S.

J. S. Bell, "On the problem of hidden variables in quantum mechanics," Rev. Mod. Phys. 38, 447-452 (1966).
[CrossRef]

Bethune, D. S.

D. S. Bethune, W. P. Risk, and G. W. Pabst, "A high-performance integrated single-photon detector for telecom wavelengths," J. Mod. Opt. 51, 1359-1368 (2004).

D. S. Bethune and W. P. Risk, "Autocompensating quantum cryptography," New J. Phys. 4, 42 (2002).
[CrossRef]

Boileau, J. C.

J. C. Boileau, R. Laflamme, M. Laforest, R. C. Myers, "Robust quantum communication using a polarization-entangled photon pair," Phys. Rev. Lett. 93, 220501 (2004).
[CrossRef] [PubMed]

Carlson, R. R.

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

Dauler, E.

M. A. Albota and E. Dauler, "Single photon detection of degenerate photon pairs at 1.55 μm from a periodically poled lithium niobate parametric downconverter," J. Mod. Opt. 51, 1417-1432 (2004).

Derkacs, D.

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New J. Phys. 4, 43 (2002).
[CrossRef]

Ekert, A. K.

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Fejer, M. M.

Fiorentino, M.

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints," Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

Fouche, D. G.

Gisin, N.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug and play system," New J. Phys. 4, 41 (2002).
[CrossRef]

Guinnard, O.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug and play system," New J. Phys. 4, 41 (2002).
[CrossRef]

Heinrichs, R. M.

Hemmer, P. R.

S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, "Long-distance unconditional teleportation of atomic states via complete Bell state measurements," Phys. Rev. Lett. 87, 167903 (2001).
[CrossRef] [PubMed]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

Huang, J. M.

J. M. Huang and P. Kumar, "Observation of quantum frequency conversion," Phys. Rev. Lett. 68, 2153-2156 (1992).
[CrossRef] [PubMed]

Hughes, R. J.

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New J. Phys. 4, 43 (2002).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Kocher, D. G.

König, F.

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

Kuklewicz, C. E.

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints," Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

Kumar, P.

J. M. Huang and P. Kumar, "Observation of quantum frequency conversion," Phys. Rev. Lett. 68, 2153-2156 (1992).
[CrossRef] [PubMed]

Kurz, J. R.

Kwiat, P. G.

A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 51, 1433-1445 (2004).

Laflamme, R.

J. C. Boileau, R. Laflamme, M. Laforest, R. C. Myers, "Robust quantum communication using a polarization-entangled photon pair," Phys. Rev. Lett. 93, 220501 (2004).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Laforest, M.

J. C. Boileau, R. Laflamme, M. Laforest, R. C. Myers, "Robust quantum communication using a polarization-entangled photon pair," Phys. Rev. Lett. 93, 220501 (2004).
[CrossRef] [PubMed]

Langrock, C.

Lloyd, S.

S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, "Long-distance unconditional teleportation of atomic states via complete Bell state measurements," Phys. Rev. Lett. 87, 167903 (2001).
[CrossRef] [PubMed]

Mason, E. J.

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

Messin, G.

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints," Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Mooney, J.

Myers, R. C.

J. C. Boileau, R. Laflamme, M. Laforest, R. C. Myers, "Robust quantum communication using a polarization-entangled photon pair," Phys. Rev. Lett. 93, 220501 (2004).
[CrossRef] [PubMed]

Nordholt, J. E.

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New J. Phys. 4, 43 (2002).
[CrossRef]

O'Brien, M. E.

Pabst, G. W.

D. S. Bethune, W. P. Risk, and G. W. Pabst, "A high-performance integrated single-photon detector for telecom wavelengths," J. Mod. Opt. 51, 1359-1368 (2004).

Peterson, C. G.

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New J. Phys. 4, 43 (2002).
[CrossRef]

Player, B. E.

Rarity, J. G.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs," J. Mod. Opt. 48, 1967-1981 (2001).
[CrossRef]

Ribordy, G.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug and play system," New J. Phys. 4, 41 (2002).
[CrossRef]

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs," J. Mod. Opt. 48, 1967-1981 (2001).
[CrossRef]

Risk, W. P.

D. S. Bethune, W. P. Risk, and G. W. Pabst, "A high-performance integrated single-photon detector for telecom wavelengths," J. Mod. Opt. 51, 1359-1368 (2004).

D. S. Bethune and W. P. Risk, "Autocompensating quantum cryptography," New J. Phys. 4, 42 (2002).
[CrossRef]

Roussev, R. V.

Shahriar, M. S.

S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, "Long-distance unconditional teleportation of atomic states via complete Bell state measurements," Phys. Rev. Lett. 87, 167903 (2001).
[CrossRef] [PubMed]

Shapiro, J. H.

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints," Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

J. H. Shapiro, "Architectures for long-distance quantum teleportation," New J. Phys. 4, 47 (2002).
[CrossRef]

S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, "Long-distance unconditional teleportation of atomic states via complete Bell state measurements," Phys. Rev. Lett. 87, 167903 (2001).
[CrossRef] [PubMed]

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

Stefanov, A.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs," J. Mod. Opt. 48, 1967-1981 (2001).
[CrossRef]

Stucki, D.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug and play system," New J. Phys. 4, 41 (2002).
[CrossRef]

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs," J. Mod. Opt. 48, 1967-1981 (2001).
[CrossRef]

Vandevender, A. P.

A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 51, 1433-1445 (2004).

Wall, T.

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs," J. Mod. Opt. 48, 1967-1981 (2001).
[CrossRef]

Willard, B. C.

Wong, F. N. C.

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints," Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

M. A. Albota and F. N. C. Wong, "Efficient single-photon counting at 1.55 μm by means of frequency upconversion," Opt. Lett. 29, 1449-1451 (2004).
[CrossRef] [PubMed]

Zayhowski, J. J.

Zbinden, H.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug and play system," New J. Phys. 4, 41 (2002).
[CrossRef]

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs," J. Mod. Opt. 48, 1967-1981 (2001).
[CrossRef]

Appl. Opt. (1)

J. Mod. Opt. (4)

D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs," J. Mod. Opt. 48, 1967-1981 (2001).
[CrossRef]

D. S. Bethune, W. P. Risk, and G. W. Pabst, "A high-performance integrated single-photon detector for telecom wavelengths," J. Mod. Opt. 51, 1359-1368 (2004).

M. A. Albota and E. Dauler, "Single photon detection of degenerate photon pairs at 1.55 μm from a periodically poled lithium niobate parametric downconverter," J. Mod. Opt. 51, 1417-1432 (2004).

A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 51, 1433-1445 (2004).

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

New J. Phys. (4)

J. H. Shapiro, "Architectures for long-distance quantum teleportation," New J. Phys. 4, 47 (2002).
[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug and play system," New J. Phys. 4, 41 (2002).
[CrossRef]

D. S. Bethune and W. P. Risk, "Autocompensating quantum cryptography," New J. Phys. 4, 42 (2002).
[CrossRef]

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New J. Phys. 4, 43 (2002).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (2)

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints," Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

F. König, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).
[CrossRef]

Phys. Rev. Lett. (5)

S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, "Long-distance unconditional teleportation of atomic states via complete Bell state measurements," Phys. Rev. Lett. 87, 167903 (2001).
[CrossRef] [PubMed]

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

J. M. Huang and P. Kumar, "Observation of quantum frequency conversion," Phys. Rev. Lett. 68, 2153-2156 (1992).
[CrossRef] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," Phys. Rev. Lett. 23, 880-884 (1969).
[CrossRef]

J. C. Boileau, R. Laflamme, M. Laforest, R. C. Myers, "Robust quantum communication using a polarization-entangled photon pair," Phys. Rev. Lett. 93, 220501 (2004).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. S. Bell, "On the problem of hidden variables in quantum mechanics," Rev. Mod. Phys. 38, 447-452 (1966).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Architecture for long-distance quantum communication.[1] Entangled signal ( 795 nm ) and idler ( 1550 nm ) photons are loaded into local ( s ) and remote ( i ) Rb-atom quantum memories, respectively, for teleporting the atomic state m.

Fig. 2
Fig. 2

Polarization-independent frequency-conversion scheme using type I phase-matching in PPLN. (a) Horizontally polarized input light (↕) at λ 1 is upconverted to λ 2 as it travels from right to left through the crystal. (b) Vertically polarized input light (•) at λ 1 is rotated 90° and then upconverted to λ 2 as it passes from left to right through the crystal. QWP1 (QWP2), quarter-wave plate for 1.55 μ m ( 633 nm ) ; HR, high reflector. For clarity, the horizontally polarized pump beam is not shown here. In the actual realization of this scheme, we use only one PPLN crystal.

Fig. 3
Fig. 3

Experimental implementation of the polarization-independent frequency-upconversion scheme shown in Fig. 2. FC; fiber-optic collimator; PBS, polarizing beam splitter; DM, dichroic mirrors; HWP1 (HWP2), half-wave plate for 1.55 μ m ( 633 nm ) ; QWP1 (QWP2), quarter-wave plate for 1.55 μ m ( 633 nm ) ; HR, high reflector; PZT, piezoelectric transducer. A solid box encloses the upconverter.

Fig. 4
Fig. 4

Upconverted outputs as a function of HWP1 angle θ 1 . Top, measurement configuration; bottom, experimental results for horizontally polarized (open squares) and vertically polarized (filled circles) outputs.

Fig. 5
Fig. 5

Upconversion output as a function of input half-wave plate HWP1 angle θ 1 without polarization-analyzing optics. Top, measurement configuration; bottom, experimental results.

Fig. 6
Fig. 6

d- and a- polarized upconversion signal outputs as functions of upconverter interferometer PZT scan for + 45 ° linearly polarized input (along d). Top, measurement configuration; bottom, experimental results. The arrow indicates the scan location at which the output field has the correct phase for polarization-state preservation. θ 1 = θ 2 = π 8 .

Fig. 7
Fig. 7

Upconversion signal analyzed after HWP2 along d and a polarizations for + 45 ° -polarized (along d) input under phase-locked conditions for the upconverter Michelson interferometer.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

[ A ̂ j ( 0 , ω ) , A ̂ k ( 0 , ω ) ] = 0 ,
[ A ̂ j ( 0 , ω ) , A ̂ k ( 0 , ω ) ] = 2 π δ j k δ ( ω ω ) for j , k = 1 , 2 ,
x A ̂ 2 ( x , ω ) = i κ A P A ̂ 1 ( x , ω ) exp ( i ω Δ k x ) ,
x A ̂ 1 ( x , ω ) = i κ A P * A ̂ 2 ( x , ω ) exp ( i ω Δ k x ) ,
κ ( ω P ω 1 ω 2 2 c 3 n P n 1 n 2 ϵ 0 A ) 1 2 χ ( 2 )
Δ k d d ω [ k 2 ( ω 2 + ω ) k 1 ( ω 1 + ω ) ] ω = 0
A ̂ 2 ( l , ω ) = [ cos ( q l ) + i ω Δ k l 2 sin ( q l ) q l ] exp ( i ω Δ k l 2 ) A ̂ 2 ( 0 , ω ) + i κ A P l sin ( q l ) q l exp ( i ω Δ k l 2 ) A ̂ 1 ( 0 , ω ) ,
A ̂ 1 ( l , ω ) = [ cos ( q l ) i ω Δ k l 2 sin ( q l ) q l ] exp ( i ω Δ k l 2 ) A ̂ 1 ( 0 , ω ) + i κ A P * l sin ( q l ) q l exp ( i ω Δ k l 2 ) A ̂ 2 ( 0 , ω ) ,
q [ ( κ A P ) 2 + ( ω Δ k 2 ) 2 ] 1 2 .
A ̂ 2 ( l , 0 ) = i A P A P A ̂ 1 ( 0 , 0 ) .
A ̂ 2 ( l , ω ) cos ( κ A P l ) A ̂ 2 ( 0 , ω ) + i A P A P sin ( κ A P l ) A ̂ 1 ( 0 , ω ) ,
A ̂ 2 ( l , ω ) i A P A P A ̂ 1 ( 0 , ω )
E in = H in h + exp ( i ϕ in ) V in v
E out = H out v + exp ( i ϕ out ) V out h ,
H out 2 + V out 2 = α h 2 η h 2 cos 2 2 θ 1 + α v 2 η v 2 sin 2 2 θ 1 .
E out E o 2 { [ 1 + exp ( i ϕ out ) ] d [ 1 exp ( i ϕ out ) ] a } .

Metrics