Abstract

The local optical field of a semiconductor micrograting (GaAs, 10×10μm) is recorded in the middle field region using an optical scanning probe in collection mode at a constant height. The recorded image shows the micrograting with high contrast and a displaced diffraction image. The finite penetration depth of the light leads to a reduced edge resolution in the direction of the illuminating beam while the edge contrast in the perpendicular direction remains high (100nm). We use the discrete dipole model to calculate the local optical field to show how the displacement of the diffraction image increases with increasing distance from the surface.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl and D. Courjon, Near Field Optics, NATO ANSI Series (Kluwer, 1993), Vol. 242.
  2. S. N. Garcia and M. Nieto-Vesperinas, Optics at the Nanometer, NATO ANSI Series E (Kluwer, 1996), Vol. 319.
  3. J. A. Porto, R. Carminati, and J.-J. Greffet, "Theory of electromagnetic field imaging and spectroscopy in scanning near-field optical microscopy," J. Appl. Phys. 88, 4845-4850 (2000).
    [CrossRef]
  4. C. Girard and D. Courjon, "Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods," Phys. Rev. B 42, 9340-9349 (1990).
    [CrossRef]
  5. A. Liu, A. Rahmani, G. W. Bryant, L. J. Richter, and S. J. Stranick, "Modeling illumination-mode near-field optical microscopy of Au nanoparticles," J. Opt. Soc. Am. A 18, 704-709 (2001).
    [CrossRef]
  6. N. Umeda, Y. Hayashi, K. Nagai, and A. Takayanagi, "Scanning Wiener-fringe microscope with an optical fiber tip," Appl. Opt. 31, 4515-4518 (1992).
    [CrossRef] [PubMed]
  7. W. S. Bacsa and A. Kulilk, "Interference scanning optical probe microscopy," Appl. Phys. Lett. 70, 3507-3509 (1997).
    [CrossRef]
  8. W. S. Bacsa, "Interference scanning optical probe microscopy: principles and applications," in Advances in Imaging and Electron Physics, 1st ed., S.Hawks, ed. (Academic, 1999), Vol. 110, pp. 1-19.
    [CrossRef]
  9. B. Levine, A. Kulik, and W. S. Bacsa, "Optical space and time coherence near surfaces," Phys. Rev. B 66, 233404-1-233404-4 (2002).
    [CrossRef]
  10. B. Levine, M. Caumont, C. Amien, B. Chaudret, B. Dwir, and W. S. Bacsa, "Local optical field in the neighborhood of structured surfaces: phase singularities and Talbot effect," Technical Proceedings of the Nanoscience and Technology Institute (NTSI, 2004), Vol. 3, pp. 5-9.
  11. D. Felbacq, A. Moreau, and R. Smaali, "Goos-Hanchen effect in the gaps of photonic crystals," Opt. Lett. 28, 1633-1637 (2003).
    [CrossRef]

2003 (1)

2002 (1)

B. Levine, A. Kulik, and W. S. Bacsa, "Optical space and time coherence near surfaces," Phys. Rev. B 66, 233404-1-233404-4 (2002).
[CrossRef]

2001 (1)

2000 (1)

J. A. Porto, R. Carminati, and J.-J. Greffet, "Theory of electromagnetic field imaging and spectroscopy in scanning near-field optical microscopy," J. Appl. Phys. 88, 4845-4850 (2000).
[CrossRef]

1997 (1)

W. S. Bacsa and A. Kulilk, "Interference scanning optical probe microscopy," Appl. Phys. Lett. 70, 3507-3509 (1997).
[CrossRef]

1992 (1)

1990 (1)

C. Girard and D. Courjon, "Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods," Phys. Rev. B 42, 9340-9349 (1990).
[CrossRef]

Amien, C.

B. Levine, M. Caumont, C. Amien, B. Chaudret, B. Dwir, and W. S. Bacsa, "Local optical field in the neighborhood of structured surfaces: phase singularities and Talbot effect," Technical Proceedings of the Nanoscience and Technology Institute (NTSI, 2004), Vol. 3, pp. 5-9.

Bacsa, W. S.

B. Levine, A. Kulik, and W. S. Bacsa, "Optical space and time coherence near surfaces," Phys. Rev. B 66, 233404-1-233404-4 (2002).
[CrossRef]

W. S. Bacsa and A. Kulilk, "Interference scanning optical probe microscopy," Appl. Phys. Lett. 70, 3507-3509 (1997).
[CrossRef]

W. S. Bacsa, "Interference scanning optical probe microscopy: principles and applications," in Advances in Imaging and Electron Physics, 1st ed., S.Hawks, ed. (Academic, 1999), Vol. 110, pp. 1-19.
[CrossRef]

B. Levine, M. Caumont, C. Amien, B. Chaudret, B. Dwir, and W. S. Bacsa, "Local optical field in the neighborhood of structured surfaces: phase singularities and Talbot effect," Technical Proceedings of the Nanoscience and Technology Institute (NTSI, 2004), Vol. 3, pp. 5-9.

Bryant, G. W.

Carminati, R.

J. A. Porto, R. Carminati, and J.-J. Greffet, "Theory of electromagnetic field imaging and spectroscopy in scanning near-field optical microscopy," J. Appl. Phys. 88, 4845-4850 (2000).
[CrossRef]

Caumont, M.

B. Levine, M. Caumont, C. Amien, B. Chaudret, B. Dwir, and W. S. Bacsa, "Local optical field in the neighborhood of structured surfaces: phase singularities and Talbot effect," Technical Proceedings of the Nanoscience and Technology Institute (NTSI, 2004), Vol. 3, pp. 5-9.

Chaudret, B.

B. Levine, M. Caumont, C. Amien, B. Chaudret, B. Dwir, and W. S. Bacsa, "Local optical field in the neighborhood of structured surfaces: phase singularities and Talbot effect," Technical Proceedings of the Nanoscience and Technology Institute (NTSI, 2004), Vol. 3, pp. 5-9.

Courjon, D.

C. Girard and D. Courjon, "Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods," Phys. Rev. B 42, 9340-9349 (1990).
[CrossRef]

D. W. Pohl and D. Courjon, Near Field Optics, NATO ANSI Series (Kluwer, 1993), Vol. 242.

Dwir, B.

B. Levine, M. Caumont, C. Amien, B. Chaudret, B. Dwir, and W. S. Bacsa, "Local optical field in the neighborhood of structured surfaces: phase singularities and Talbot effect," Technical Proceedings of the Nanoscience and Technology Institute (NTSI, 2004), Vol. 3, pp. 5-9.

Felbacq, D.

Garcia, S. N.

S. N. Garcia and M. Nieto-Vesperinas, Optics at the Nanometer, NATO ANSI Series E (Kluwer, 1996), Vol. 319.

Girard, C.

C. Girard and D. Courjon, "Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods," Phys. Rev. B 42, 9340-9349 (1990).
[CrossRef]

Greffet, J.-J.

J. A. Porto, R. Carminati, and J.-J. Greffet, "Theory of electromagnetic field imaging and spectroscopy in scanning near-field optical microscopy," J. Appl. Phys. 88, 4845-4850 (2000).
[CrossRef]

Hayashi, Y.

Kulik, A.

B. Levine, A. Kulik, and W. S. Bacsa, "Optical space and time coherence near surfaces," Phys. Rev. B 66, 233404-1-233404-4 (2002).
[CrossRef]

Kulilk, A.

W. S. Bacsa and A. Kulilk, "Interference scanning optical probe microscopy," Appl. Phys. Lett. 70, 3507-3509 (1997).
[CrossRef]

Levine, B.

B. Levine, A. Kulik, and W. S. Bacsa, "Optical space and time coherence near surfaces," Phys. Rev. B 66, 233404-1-233404-4 (2002).
[CrossRef]

B. Levine, M. Caumont, C. Amien, B. Chaudret, B. Dwir, and W. S. Bacsa, "Local optical field in the neighborhood of structured surfaces: phase singularities and Talbot effect," Technical Proceedings of the Nanoscience and Technology Institute (NTSI, 2004), Vol. 3, pp. 5-9.

Liu, A.

Moreau, A.

Nagai, K.

Nieto-Vesperinas, M.

S. N. Garcia and M. Nieto-Vesperinas, Optics at the Nanometer, NATO ANSI Series E (Kluwer, 1996), Vol. 319.

Pohl, D. W.

D. W. Pohl and D. Courjon, Near Field Optics, NATO ANSI Series (Kluwer, 1993), Vol. 242.

Porto, J. A.

J. A. Porto, R. Carminati, and J.-J. Greffet, "Theory of electromagnetic field imaging and spectroscopy in scanning near-field optical microscopy," J. Appl. Phys. 88, 4845-4850 (2000).
[CrossRef]

Rahmani, A.

Richter, L. J.

Smaali, R.

Stranick, S. J.

Takayanagi, A.

Umeda, N.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. S. Bacsa and A. Kulilk, "Interference scanning optical probe microscopy," Appl. Phys. Lett. 70, 3507-3509 (1997).
[CrossRef]

J. Appl. Phys. (1)

J. A. Porto, R. Carminati, and J.-J. Greffet, "Theory of electromagnetic field imaging and spectroscopy in scanning near-field optical microscopy," J. Appl. Phys. 88, 4845-4850 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Phys. Rev. B (2)

C. Girard and D. Courjon, "Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods," Phys. Rev. B 42, 9340-9349 (1990).
[CrossRef]

B. Levine, A. Kulik, and W. S. Bacsa, "Optical space and time coherence near surfaces," Phys. Rev. B 66, 233404-1-233404-4 (2002).
[CrossRef]

Other (4)

B. Levine, M. Caumont, C. Amien, B. Chaudret, B. Dwir, and W. S. Bacsa, "Local optical field in the neighborhood of structured surfaces: phase singularities and Talbot effect," Technical Proceedings of the Nanoscience and Technology Institute (NTSI, 2004), Vol. 3, pp. 5-9.

W. S. Bacsa, "Interference scanning optical probe microscopy: principles and applications," in Advances in Imaging and Electron Physics, 1st ed., S.Hawks, ed. (Academic, 1999), Vol. 110, pp. 1-19.
[CrossRef]

D. W. Pohl and D. Courjon, Near Field Optics, NATO ANSI Series (Kluwer, 1993), Vol. 242.

S. N. Garcia and M. Nieto-Vesperinas, Optics at the Nanometer, NATO ANSI Series E (Kluwer, 1996), Vol. 319.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the reflection collection mode: sample (S), plane of incidence of illuminating beam (P) (TE polarization), angle of incidence ( α ) , image plane (I), and optical probe. (b) Recorded optical image of micrograting (periodicity, 1.43 μ m ) oriented perpendicular to plane of incidence at a large distance ( > 30 μ m ) , and image size 60 × 60 μ m ; the incident beam direction is from the lower side and is at an angle of incidence 50 ° , and the fringe spacing of the standing wave of the incident and reflected beams is 6010 nm . The circle indicates the location of the micrograting. (c) Same scan range and experimental conditions as in (b) after changing the tilt of the image plane.

Fig. 2
Fig. 2

Recorded optical image of a micrograting at a smaller distance ( < 5 μ m ) than in Fig. 1c. (a) Image size 20 μ m , region 1 is due to diffraction from the micrograting; and region 2 shows the grating fringes. (b) Enlargement of the lower right corner (image size 6250 nm ) of image (a). Vertical edges are narrower than horizontal edges. The inset shows a cross-section in the horizontal direction. (c) A rotated micrograting under the same experimental conditions; image size 10 μ m × 10 μ m . The vertical grating edges in the circle are as narrow as in (a) and (b). The arrow indicates the first diffraction fringe from a dust particle.

Fig. 3
Fig. 3

Calculated image contrast of the micrograting using 1180 point dipoles: (a) image height 3 λ ; the square indicates the location of the grating, and region 1 and region 2 are the same as in Fig. 2; (b) image height 9 λ ; the diffraction fringes are displaced in the direction of the illuminating beam. The displacement depends on the image height. The locations of the dipoles are marked by red points.

Metrics