Abstract

We present evidence of photoselection by polarized multiphoton absorption (MPA) in an azo dye, i.e., Disperse Red 1 (DR1), dispersed in films of poly(methyl-methacrylate). MPA of DR1 at a fundamental of 785nm, from a pulsed, regeneratively amplified, Ti:sapphire laser, results in photobleaching of the dye, and linearly polarized MPA of DR1 creates anisotropy, a feature that is indicative of orientational hole burning by MPA. The slopes of the early-time evolution of the isotropic absorbance and anisotropy show a dependence on the 3.65±0.15 power of the excitation laser intensity, and the dynamics of MPA-induced orientation are described by a theoretical model for MPA selective bleaching.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zyss, "Molecular engineering implications of rotational invariance in quadratic nonlinear optics—>from dipolar to octupolar molecules and materials," J. Chem. Phys. 98, 6583-6599 (1993).
    [CrossRef]
  2. J. Zyss, P. Kelley, and P. Liao, Molecular Nonlinear Optics (Academic, 1994).
  3. Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002).
  4. F. Weigert, "Dichroism induced in a fine-grain silver-chloride emulsion by a beam of linearly polarized light," Verh. Dtsch. Phys. Ges. 21, 479-483 (1919).
  5. Z. Sekkat and M. Dumont, "Photoassisted poling of azo dye doped polymeric films at room temperature," Appl. Phys. B 54, 486-489 (1992).
    [CrossRef]
  6. F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, "Light-induced second-harmonic generation in azo-dye polymers," Opt. Lett. 18, 941-943 (1993).
    [CrossRef] [PubMed]
  7. R. Piron, S. Brasselet, D. Josse, J. Zyss, G. Viscardi, and C. Barolo, "Matching molecular and optical multipoles in photoisomerizable nonlinear systems," J. Opt. Soc. Am. B 22, 1276-1282 (2005).
    [CrossRef]
  8. S. Adachi and T. Kobayashi, "Carrier-envelope phase-controlled quantum interference in optical poling," Phys. Rev. Lett. 94, 153903 (2005).
    [CrossRef] [PubMed]
  9. Z. Sekkat, A. Knoesen, V. Y. Lee, and R. D. Miller, "Observation of reversible photochemical 'blow out' of the third-order molecular hyperpolarizability of push-pull azo dye in high glass transition temperature polyimides," J. Phys. Chem. 101, 4733-4739 (1997).
  10. S. Liu, W. L Wang, C. C. Fang, T. H. Huang, and C. C. Hsu, "Photoreactive phase conjugation strength in disperse red 1 doped poly(methylmethacrylate) thin films," J. Appl. Phys. 97, 013103 (2005).
    [CrossRef]
  11. Z. Sekkat, D. Yasumatsu, and S. Kawata, "Pure photoorientation of azo dye in polyurethanes and quantification of orientation of spectrally overlapping isomers," J. Phys. Chem. B 106, 12407-12417 (2002).
    [CrossRef]
  12. Z. Sekkat, P. Prêtre, A. Knoesen, W. Volksen, V. Y. Lee, R. D. Miller, J. Wood, and W. Knoll, "Correlation between polymer architecture and sub-glass-transition-temperature light-induced molecular movement in azo-polyimide polymers: influence on linear and second- and third-order nonlinear optical processes," J. Opt. Soc. Am. B 15, 401-413 (1998).
    [CrossRef]
  13. W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
    [CrossRef] [PubMed]
  14. M. G. Kuzyk, "Fundamental limits on two-photon absorption cross sections," J. Phys. Chem. 119, 8327-8334 (2003).
  15. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices—>micromachines can be created with higher resolution using two-photon absorption," Nature 412, 697-698 (2001).
    [CrossRef] [PubMed]
  16. D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-345 (1989).
    [CrossRef]
  17. W. Denk, J. H. Strickler, and W. W. Webb, "2-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  18. Z. Sekkat, H. Ishitobi, and S. Kawata, "Two-photon isomerization and orientation of photoisomers in thin films of polymer," Opt. Commun. 222, 269-276 (2003).
    [CrossRef]
  19. Z. Sekkat, "Isomeric orientation by two-photon excitation: a theoretical study," Opt. Commun. 229, 291-303 (2004).
    [CrossRef]
  20. M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, "Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films," Appl. Phys. Lett. 85, 351-353 (2004).
    [CrossRef]
  21. Z. Sekkat, J. Wood, W. Knoll, W. Volksen, and R. D. Miller, "Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain," J. Opt. Soc. Am. B 13, 1713-1724 (1996).
    [CrossRef]
  22. A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, L. Sukhomlinova, R. J. Twieg, K. P. Chan, T. C. Kowalczyk, and H. S. Lackritz, "Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment," J. Opt. Soc. Am. B 17, 1992-2000 (2000).
    [CrossRef]
  23. J. Vydra, H. Beisinghoff, T. Tschudi, and M. Eich, "Photodecay mechanisms in side chain nonlinear optical polymethacrylates," Appl. Phys. Lett. 69, 1035-1037 (1996).
    [CrossRef]
  24. M. Nakanishi, O. Sugihara, N. Okamoto, and K. Hirota, "Ultraviolet photobleaching process of azo dye doped polymer and silica films for fabrication of nonlinear optical waveguides," Appl. Opt. 37, 1068-1073 (1998).
    [CrossRef]
  25. J. O. Morley, O. J. Guy, and M. H. Charlton, "Mechanistic studies on the photodegradation of azoarenes," J. Photochem. Photobiol., A 173, 174-184 (2005).
    [CrossRef]
  26. J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, "Femto- and nanosecond laser treatment of doped polymethylmethacrylate," Appl. Surf. Sci. 247, 406-411 (2005).
    [CrossRef]
  27. J. D. Jackson, Classical Electrodynamics (Wiley, 1962).
  28. T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, "Exceptionally thermally stable polyimides for 2nd-order nonlinear-optical applications," Science 66, 1604-1606 (1995).
  29. Z. Sekkat, J. Wood, W. Knoll, W. Volksen, R. D. Miller, and A. Knoesen, "Light-induced orientation in azo-polyimide polymers 325°C below the glass transition temperature," J. Opt. Soc. Am. B 14, 829-833 (1997).
    [CrossRef]
  30. C. Xu and W. W. Webb, "Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050nm," J. Opt. Soc. Am. B 13, 481-491 (1996).
    [CrossRef]

2005

R. Piron, S. Brasselet, D. Josse, J. Zyss, G. Viscardi, and C. Barolo, "Matching molecular and optical multipoles in photoisomerizable nonlinear systems," J. Opt. Soc. Am. B 22, 1276-1282 (2005).
[CrossRef]

S. Adachi and T. Kobayashi, "Carrier-envelope phase-controlled quantum interference in optical poling," Phys. Rev. Lett. 94, 153903 (2005).
[CrossRef] [PubMed]

S. Liu, W. L Wang, C. C. Fang, T. H. Huang, and C. C. Hsu, "Photoreactive phase conjugation strength in disperse red 1 doped poly(methylmethacrylate) thin films," J. Appl. Phys. 97, 013103 (2005).
[CrossRef]

J. O. Morley, O. J. Guy, and M. H. Charlton, "Mechanistic studies on the photodegradation of azoarenes," J. Photochem. Photobiol., A 173, 174-184 (2005).
[CrossRef]

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, "Femto- and nanosecond laser treatment of doped polymethylmethacrylate," Appl. Surf. Sci. 247, 406-411 (2005).
[CrossRef]

2004

Z. Sekkat, "Isomeric orientation by two-photon excitation: a theoretical study," Opt. Commun. 229, 291-303 (2004).
[CrossRef]

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, "Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films," Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

2003

M. G. Kuzyk, "Fundamental limits on two-photon absorption cross sections," J. Phys. Chem. 119, 8327-8334 (2003).

Z. Sekkat, H. Ishitobi, and S. Kawata, "Two-photon isomerization and orientation of photoisomers in thin films of polymer," Opt. Commun. 222, 269-276 (2003).
[CrossRef]

2002

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Z. Sekkat, D. Yasumatsu, and S. Kawata, "Pure photoorientation of azo dye in polyurethanes and quantification of orientation of spectrally overlapping isomers," J. Phys. Chem. B 106, 12407-12417 (2002).
[CrossRef]

2001

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices—>micromachines can be created with higher resolution using two-photon absorption," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

2000

1998

1997

Z. Sekkat, J. Wood, W. Knoll, W. Volksen, R. D. Miller, and A. Knoesen, "Light-induced orientation in azo-polyimide polymers 325°C below the glass transition temperature," J. Opt. Soc. Am. B 14, 829-833 (1997).
[CrossRef]

Z. Sekkat, A. Knoesen, V. Y. Lee, and R. D. Miller, "Observation of reversible photochemical 'blow out' of the third-order molecular hyperpolarizability of push-pull azo dye in high glass transition temperature polyimides," J. Phys. Chem. 101, 4733-4739 (1997).

1996

1995

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, "Exceptionally thermally stable polyimides for 2nd-order nonlinear-optical applications," Science 66, 1604-1606 (1995).

1993

J. Zyss, "Molecular engineering implications of rotational invariance in quadratic nonlinear optics—>from dipolar to octupolar molecules and materials," J. Chem. Phys. 98, 6583-6599 (1993).
[CrossRef]

F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, "Light-induced second-harmonic generation in azo-dye polymers," Opt. Lett. 18, 941-943 (1993).
[CrossRef] [PubMed]

1992

Z. Sekkat and M. Dumont, "Photoassisted poling of azo dye doped polymeric films at room temperature," Appl. Phys. B 54, 486-489 (1992).
[CrossRef]

1990

W. Denk, J. H. Strickler, and W. W. Webb, "2-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

1989

D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-345 (1989).
[CrossRef]

1919

F. Weigert, "Dichroism induced in a fine-grain silver-chloride emulsion by a beam of linearly polarized light," Verh. Dtsch. Phys. Ges. 21, 479-483 (1919).

Adachi, S.

S. Adachi and T. Kobayashi, "Carrier-envelope phase-controlled quantum interference in optical poling," Phys. Rev. Lett. 94, 153903 (2005).
[CrossRef] [PubMed]

Barolo, C.

Beisinghoff, H.

J. Vydra, H. Beisinghoff, T. Tschudi, and M. Eich, "Photodecay mechanisms in side chain nonlinear optical polymethacrylates," Appl. Phys. Lett. 69, 1035-1037 (1996).
[CrossRef]

Brasselet, S.

Braun, K. L.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Burland, D. M.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, "Exceptionally thermally stable polyimides for 2nd-order nonlinear-optical applications," Science 66, 1604-1606 (1995).

Cammack, J. K.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Canva, M.

Chan, K. P.

Charlton, M. H.

J. O. Morley, O. J. Guy, and M. H. Charlton, "Mechanistic studies on the photodegradation of azoarenes," J. Photochem. Photobiol., A 173, 174-184 (2005).
[CrossRef]

Charra, F.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, "2-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Dumont, M.

Z. Sekkat and M. Dumont, "Photoassisted poling of azo dye doped polymeric films at room temperature," Appl. Phys. B 54, 486-489 (1992).
[CrossRef]

Eich, M.

J. Vydra, H. Beisinghoff, T. Tschudi, and M. Eich, "Photodecay mechanisms in side chain nonlinear optical polymethacrylates," Appl. Phys. Lett. 69, 1035-1037 (1996).
[CrossRef]

Fang, C. C.

S. Liu, W. L Wang, C. C. Fang, T. H. Huang, and C. C. Hsu, "Photoreactive phase conjugation strength in disperse red 1 doped poly(methylmethacrylate) thin films," J. Appl. Phys. 97, 013103 (2005).
[CrossRef]

Galvan-Gonzalez, A.

Guy, O. J.

J. O. Morley, O. J. Guy, and M. H. Charlton, "Mechanistic studies on the photodegradation of azoarenes," J. Photochem. Photobiol., A 173, 174-184 (2005).
[CrossRef]

Hirota, K.

Hsu, C. C.

S. Liu, W. L Wang, C. C. Fang, T. H. Huang, and C. C. Hsu, "Photoreactive phase conjugation strength in disperse red 1 doped poly(methylmethacrylate) thin films," J. Appl. Phys. 97, 013103 (2005).
[CrossRef]

Huang, T. H.

S. Liu, W. L Wang, C. C. Fang, T. H. Huang, and C. C. Hsu, "Photoreactive phase conjugation strength in disperse red 1 doped poly(methylmethacrylate) thin films," J. Appl. Phys. 97, 013103 (2005).
[CrossRef]

Idiart, E.

Ishitobi, H.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, "Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films," Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

Z. Sekkat, H. Ishitobi, and S. Kawata, "Two-photon isomerization and orientation of photoisomers in thin films of polymer," Opt. Commun. 222, 269-276 (2003).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1962).

Josse, D.

Jurich, M. C.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, "Exceptionally thermally stable polyimides for 2nd-order nonlinear-optical applications," Science 66, 1604-1606 (1995).

Kajzar, F.

Kautek, W.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, "Femto- and nanosecond laser treatment of doped polymethylmethacrylate," Appl. Surf. Sci. 247, 406-411 (2005).
[CrossRef]

Kawata, S.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, "Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films," Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

Z. Sekkat, H. Ishitobi, and S. Kawata, "Two-photon isomerization and orientation of photoisomers in thin films of polymer," Opt. Commun. 222, 269-276 (2003).
[CrossRef]

Z. Sekkat, D. Yasumatsu, and S. Kawata, "Pure photoorientation of azo dye in polyurethanes and quantification of orientation of spectrally overlapping isomers," J. Phys. Chem. B 106, 12407-12417 (2002).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices—>micromachines can be created with higher resolution using two-photon absorption," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Kelley, P.

J. Zyss, P. Kelley, and P. Liao, Molecular Nonlinear Optics (Academic, 1994).

Knoesen, A.

Knoll, W.

Kobayashi, T.

S. Adachi and T. Kobayashi, "Carrier-envelope phase-controlled quantum interference in optical poling," Phys. Rev. Lett. 94, 153903 (2005).
[CrossRef] [PubMed]

Kowalczyk, T. C.

Krüger, J.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, "Femto- and nanosecond laser treatment of doped polymethylmethacrylate," Appl. Surf. Sci. 247, 406-411 (2005).
[CrossRef]

Kuebler, S. M.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Kuzyk, M. G.

M. G. Kuzyk, "Fundamental limits on two-photon absorption cross sections," J. Phys. Chem. 119, 8327-8334 (2003).

L Wang, W.

S. Liu, W. L Wang, C. C. Fang, T. H. Huang, and C. C. Hsu, "Photoreactive phase conjugation strength in disperse red 1 doped poly(methylmethacrylate) thin films," J. Appl. Phys. 97, 013103 (2005).
[CrossRef]

Lackritz, H. S.

Lee, V. Y.

Z. Sekkat, P. Prêtre, A. Knoesen, W. Volksen, V. Y. Lee, R. D. Miller, J. Wood, and W. Knoll, "Correlation between polymer architecture and sub-glass-transition-temperature light-induced molecular movement in azo-polyimide polymers: influence on linear and second- and third-order nonlinear optical processes," J. Opt. Soc. Am. B 15, 401-413 (1998).
[CrossRef]

Z. Sekkat, A. Knoesen, V. Y. Lee, and R. D. Miller, "Observation of reversible photochemical 'blow out' of the third-order molecular hyperpolarizability of push-pull azo dye in high glass transition temperature polyimides," J. Phys. Chem. 101, 4733-4739 (1997).

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, "Exceptionally thermally stable polyimides for 2nd-order nonlinear-optical applications," Science 66, 1604-1606 (1995).

Liao, P.

J. Zyss, P. Kelley, and P. Liao, Molecular Nonlinear Optics (Academic, 1994).

Lippert, T.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, "Femto- and nanosecond laser treatment of doped polymethylmethacrylate," Appl. Surf. Sci. 247, 406-411 (2005).
[CrossRef]

Liu, S.

S. Liu, W. L Wang, C. C. Fang, T. H. Huang, and C. C. Hsu, "Photoreactive phase conjugation strength in disperse red 1 doped poly(methylmethacrylate) thin films," J. Appl. Phys. 97, 013103 (2005).
[CrossRef]

Mädebach, H.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, "Femto- and nanosecond laser treatment of doped polymethylmethacrylate," Appl. Surf. Sci. 247, 406-411 (2005).
[CrossRef]

Maeda, M.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, "Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films," Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

Marder, S. R.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Martin, S.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, "Femto- and nanosecond laser treatment of doped polymethylmethacrylate," Appl. Surf. Sci. 247, 406-411 (2005).
[CrossRef]

Miller, R. D.

Morley, J. O.

J. O. Morley, O. J. Guy, and M. H. Charlton, "Mechanistic studies on the photodegradation of azoarenes," J. Photochem. Photobiol., A 173, 174-184 (2005).
[CrossRef]

Nakanishi, M.

Nunzi, J. M.

Ober, C. K.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Okamoto, N.

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-345 (1989).
[CrossRef]

Perry, J. W.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Piron, R.

Prêtre, P.

Raimond, P.

Rentzepis, P. M.

D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-345 (1989).
[CrossRef]

Sekkat, Z.

Z. Sekkat, "Isomeric orientation by two-photon excitation: a theoretical study," Opt. Commun. 229, 291-303 (2004).
[CrossRef]

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, "Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films," Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

Z. Sekkat, H. Ishitobi, and S. Kawata, "Two-photon isomerization and orientation of photoisomers in thin films of polymer," Opt. Commun. 222, 269-276 (2003).
[CrossRef]

Z. Sekkat, D. Yasumatsu, and S. Kawata, "Pure photoorientation of azo dye in polyurethanes and quantification of orientation of spectrally overlapping isomers," J. Phys. Chem. B 106, 12407-12417 (2002).
[CrossRef]

Z. Sekkat, P. Prêtre, A. Knoesen, W. Volksen, V. Y. Lee, R. D. Miller, J. Wood, and W. Knoll, "Correlation between polymer architecture and sub-glass-transition-temperature light-induced molecular movement in azo-polyimide polymers: influence on linear and second- and third-order nonlinear optical processes," J. Opt. Soc. Am. B 15, 401-413 (1998).
[CrossRef]

Z. Sekkat, A. Knoesen, V. Y. Lee, and R. D. Miller, "Observation of reversible photochemical 'blow out' of the third-order molecular hyperpolarizability of push-pull azo dye in high glass transition temperature polyimides," J. Phys. Chem. 101, 4733-4739 (1997).

Z. Sekkat, J. Wood, W. Knoll, W. Volksen, R. D. Miller, and A. Knoesen, "Light-induced orientation in azo-polyimide polymers 325°C below the glass transition temperature," J. Opt. Soc. Am. B 14, 829-833 (1997).
[CrossRef]

Z. Sekkat, J. Wood, W. Knoll, W. Volksen, and R. D. Miller, "Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain," J. Opt. Soc. Am. B 13, 1713-1724 (1996).
[CrossRef]

Z. Sekkat and M. Dumont, "Photoassisted poling of azo dye doped polymeric films at room temperature," Appl. Phys. B 54, 486-489 (1992).
[CrossRef]

Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002).

Stegeman, G. I.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, "2-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Sugihara, O.

Sukhomlinova, L.

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices—>micromachines can be created with higher resolution using two-photon absorption," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices—>micromachines can be created with higher resolution using two-photon absorption," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices—>micromachines can be created with higher resolution using two-photon absorption," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Tschudi, T.

J. Vydra, H. Beisinghoff, T. Tschudi, and M. Eich, "Photodecay mechanisms in side chain nonlinear optical polymethacrylates," Appl. Phys. Lett. 69, 1035-1037 (1996).
[CrossRef]

Twieg, R. J.

Urech, L.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, "Femto- and nanosecond laser treatment of doped polymethylmethacrylate," Appl. Surf. Sci. 247, 406-411 (2005).
[CrossRef]

Verbiest, T.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, "Exceptionally thermally stable polyimides for 2nd-order nonlinear-optical applications," Science 66, 1604-1606 (1995).

Viscardi, G.

Volksen, W.

Vydra, J.

J. Vydra, H. Beisinghoff, T. Tschudi, and M. Eich, "Photodecay mechanisms in side chain nonlinear optical polymethacrylates," Appl. Phys. Lett. 69, 1035-1037 (1996).
[CrossRef]

Webb, W. W.

Weigert, F.

F. Weigert, "Dichroism induced in a fine-grain silver-chloride emulsion by a beam of linearly polarized light," Verh. Dtsch. Phys. Ges. 21, 479-483 (1919).

Wokaun, A.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, "Femto- and nanosecond laser treatment of doped polymethylmethacrylate," Appl. Surf. Sci. 247, 406-411 (2005).
[CrossRef]

Wood, J.

Xu, C.

Yasumatsu, D.

Z. Sekkat, D. Yasumatsu, and S. Kawata, "Pure photoorientation of azo dye in polyurethanes and quantification of orientation of spectrally overlapping isomers," J. Phys. Chem. B 106, 12407-12417 (2002).
[CrossRef]

Yu, T.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Zhou, W. H.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Zyss, J.

R. Piron, S. Brasselet, D. Josse, J. Zyss, G. Viscardi, and C. Barolo, "Matching molecular and optical multipoles in photoisomerizable nonlinear systems," J. Opt. Soc. Am. B 22, 1276-1282 (2005).
[CrossRef]

J. Zyss, "Molecular engineering implications of rotational invariance in quadratic nonlinear optics—>from dipolar to octupolar molecules and materials," J. Chem. Phys. 98, 6583-6599 (1993).
[CrossRef]

J. Zyss, P. Kelley, and P. Liao, Molecular Nonlinear Optics (Academic, 1994).

Appl. Opt.

Appl. Phys. B

Z. Sekkat and M. Dumont, "Photoassisted poling of azo dye doped polymeric films at room temperature," Appl. Phys. B 54, 486-489 (1992).
[CrossRef]

Appl. Phys. Lett.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, "Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films," Appl. Phys. Lett. 85, 351-353 (2004).
[CrossRef]

J. Vydra, H. Beisinghoff, T. Tschudi, and M. Eich, "Photodecay mechanisms in side chain nonlinear optical polymethacrylates," Appl. Phys. Lett. 69, 1035-1037 (1996).
[CrossRef]

Appl. Surf. Sci.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, "Femto- and nanosecond laser treatment of doped polymethylmethacrylate," Appl. Surf. Sci. 247, 406-411 (2005).
[CrossRef]

J. Appl. Phys.

S. Liu, W. L Wang, C. C. Fang, T. H. Huang, and C. C. Hsu, "Photoreactive phase conjugation strength in disperse red 1 doped poly(methylmethacrylate) thin films," J. Appl. Phys. 97, 013103 (2005).
[CrossRef]

J. Chem. Phys.

J. Zyss, "Molecular engineering implications of rotational invariance in quadratic nonlinear optics—>from dipolar to octupolar molecules and materials," J. Chem. Phys. 98, 6583-6599 (1993).
[CrossRef]

J. Opt. Soc. Am. B

J. Photochem. Photobiol., A

J. O. Morley, O. J. Guy, and M. H. Charlton, "Mechanistic studies on the photodegradation of azoarenes," J. Photochem. Photobiol., A 173, 174-184 (2005).
[CrossRef]

J. Phys. Chem.

M. G. Kuzyk, "Fundamental limits on two-photon absorption cross sections," J. Phys. Chem. 119, 8327-8334 (2003).

Z. Sekkat, A. Knoesen, V. Y. Lee, and R. D. Miller, "Observation of reversible photochemical 'blow out' of the third-order molecular hyperpolarizability of push-pull azo dye in high glass transition temperature polyimides," J. Phys. Chem. 101, 4733-4739 (1997).

J. Phys. Chem. B

Z. Sekkat, D. Yasumatsu, and S. Kawata, "Pure photoorientation of azo dye in polyurethanes and quantification of orientation of spectrally overlapping isomers," J. Phys. Chem. B 106, 12407-12417 (2002).
[CrossRef]

Nature

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices—>micromachines can be created with higher resolution using two-photon absorption," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Opt. Commun.

Z. Sekkat, H. Ishitobi, and S. Kawata, "Two-photon isomerization and orientation of photoisomers in thin films of polymer," Opt. Commun. 222, 269-276 (2003).
[CrossRef]

Z. Sekkat, "Isomeric orientation by two-photon excitation: a theoretical study," Opt. Commun. 229, 291-303 (2004).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

S. Adachi and T. Kobayashi, "Carrier-envelope phase-controlled quantum interference in optical poling," Phys. Rev. Lett. 94, 153903 (2005).
[CrossRef] [PubMed]

Science

D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-345 (1989).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, "2-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, "Exceptionally thermally stable polyimides for 2nd-order nonlinear-optical applications," Science 66, 1604-1606 (1995).

Verh. Dtsch. Phys. Ges.

F. Weigert, "Dichroism induced in a fine-grain silver-chloride emulsion by a beam of linearly polarized light," Verh. Dtsch. Phys. Ges. 21, 479-483 (1919).

Other

J. Zyss, P. Kelley, and P. Liao, Molecular Nonlinear Optics (Academic, 1994).

Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002).

J. D. Jackson, Classical Electrodynamics (Wiley, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure formula (inset) and absorption spectrum of trans-DR1; i.e., of DR1–PMMA thin film. The wavelengths of the pump and probe beams are indicated.

Fig. 2
Fig. 2

Typical behavior of DR1–PMMA upon photoselection by MPA at 785 nm . The parallel and perpendicular absorbances and the times of turning the irradiation light on and off are indicated. In this case the laser average power was 440 mW . O.D., optical density.

Fig. 3
Fig. 3

Time evolution of the normalized isotropic absorbance of DR1–PMMA films at different laser average powers. The absorbance is normalized by the initial absorbance prior to irradiation, and the moments of turning the irradiation light on and off are indicated. The inset shows a theoretical fit by Eq. (3) to the experimental data at 500 mW irradiation power.

Fig. 4
Fig. 4

Time evolution of the normalized anisotropy of DR1–PMMA films at different laser average powers. The anisotropy is normalized by the initial absorbance prior to irradiation, and the moments of turning the irradiation light on and off are indicated. The inset shows a theoretical fit by Eq. (3) to the experimental data at 500 mW irradiation power.

Fig. 5
Fig. 5

Slopes of the early-time evolution of the normalized isotropic absorbance and anisotropy versus the laser power in a log–log plot. The markers are experimental data, and the lines are linear theoretical fits.

Fig. 6
Fig. 6

Polar plot depicting the absorbance of DR1–PMMA versus the angle ( ψ ) between irradiation and probe beam polarizations. The markers are experimental data, and the solid line is a sin 2 ψ theoretical fit.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F th ( N ) = F th ( 1 ) N ξ 1 ,
d C ( Ω ) d t = 2 n + 1 n I n ϕ δ cos 2 n θ C ( Ω ) + D R 2 C ( Ω ) .
d C q d t = 2 n + 1 n I n ϕ δ { C } q ( q + 1 ) D C q .
C 0 , 2 N = a 0 , 2 exp ( γ 2 t ) + b 0 , 2 exp ( γ 0 t ) .

Metrics