Abstract

The response of photorefractive crystals with bulk photovoltaic charge transport is usually highly nonlinear, and for illumination with a sinusoidal light pattern the recorded space-charge gratings possess, apart from the principal spatial frequency K, several higher spatial harmonics, 2K, 3K, etc. We show experimentally that purely sinusoidal index gratings can be recorded in LiNbO3:Fe when the charge redistribution is governed by spatially oscillating photovoltaic currents. This property is especially beneficial for holographic data storage.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Glass, D. von der Linde, and T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-234 (1974).
    [CrossRef]
  2. B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, 1992).
  3. Marc Luenemann, Ulrich Hartwig, and Karsten Buse, "Improvements of sensitivity and refractive-index changes in photorefractive iron doped lithium niobate crystals by applications of extremely large external electric fields," J. Opt. Soc. Am. B 20, 1643-1648 (2003).
    [CrossRef]
  4. G. T. Sincerbox, "History and Physical Principles," in Holographic Data Storage, J.H.Coufal, D.Psaltic, and G.T.Sincerbox, eds. (Springer, 2000), pp. 3-59.
  5. A. Ashkin, G. D. Boyd, J. M. Dzedzich, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72-74 (1966).
    [CrossRef]
  6. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  7. S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, "Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies," Phys. Rev. Lett. 84, 3294-3297 (2000).
    [CrossRef] [PubMed]
  8. M. Werner, Th. Woike, M. Imlau, and S. Odoulov, "Holographic recording with reduced intermodulation noise in periodically-poled lithium niobate," Opt. Lett. 30, 610-612 (2005).
    [CrossRef] [PubMed]
  9. A. Novikov, S. G. Odoulov, O. Oleinik, and B. I. Sturman, "Beam coupling, four-wave mixing and optical oscillation due to spatially oscillating photovoltaic currents in lithium niobate crystals," Ferroelectrics 75, 295-315 (1987).
    [CrossRef]
  10. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).
  11. S. Odoulov, "Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals," JETP Lett. 35, 10-13 (1982).
  12. M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407414 (2002).
  13. S. G. Odulov and O. I. Oleĭnik, "Dynamic holograms formed in LiNbO3 crystals by the transverse photogalvanic effect," Sov. J. Quantum Electron. 13, 980-982 (1983).
    [CrossRef]
  14. A. C. Chiang, Y. Y. Lin, T. D. Wang, Y. C. Huang, and J. T. Shy, "Distributed-feedback optical parametric oscillation by use of a photorefractive grating in periodically poled lithium niobate," Opt. Lett. 27, 1815-1817 (2002).
    [CrossRef]

2005 (1)

2003 (1)

2002 (2)

2000 (1)

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, "Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies," Phys. Rev. Lett. 84, 3294-3297 (2000).
[CrossRef] [PubMed]

1987 (1)

A. Novikov, S. G. Odoulov, O. Oleinik, and B. I. Sturman, "Beam coupling, four-wave mixing and optical oscillation due to spatially oscillating photovoltaic currents in lithium niobate crystals," Ferroelectrics 75, 295-315 (1987).
[CrossRef]

1983 (1)

S. G. Odulov and O. I. Oleĭnik, "Dynamic holograms formed in LiNbO3 crystals by the transverse photogalvanic effect," Sov. J. Quantum Electron. 13, 980-982 (1983).
[CrossRef]

1982 (1)

S. Odoulov, "Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals," JETP Lett. 35, 10-13 (1982).

1974 (1)

A. M. Glass, D. von der Linde, and T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-234 (1974).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dzedzich, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dzedzich, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dzedzich, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dzedzich, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Buse, Karsten

Chaplina, T. O.

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, "Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies," Phys. Rev. Lett. 84, 3294-3297 (2000).
[CrossRef] [PubMed]

Chiang, A. C.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Dzedzich, J. M.

A. Ashkin, G. D. Boyd, J. M. Dzedzich, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Fridkin, V. M.

B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, 1992).

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-234 (1974).
[CrossRef]

Grunnet-Jepsen, A.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).

Hartwig, Ulrich

Huang, Y. C.

Imlau, M.

Jazbinsek, M.

M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407414 (2002).

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dzedzich, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Lin, Y. Y.

Luenemann, Marc

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dzedzich, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Naumova, I. I.

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, "Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies," Phys. Rev. Lett. 84, 3294-3297 (2000).
[CrossRef] [PubMed]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-234 (1974).
[CrossRef]

Novikov, A.

A. Novikov, S. G. Odoulov, O. Oleinik, and B. I. Sturman, "Beam coupling, four-wave mixing and optical oscillation due to spatially oscillating photovoltaic currents in lithium niobate crystals," Ferroelectrics 75, 295-315 (1987).
[CrossRef]

Odoulov, S.

M. Werner, Th. Woike, M. Imlau, and S. Odoulov, "Holographic recording with reduced intermodulation noise in periodically-poled lithium niobate," Opt. Lett. 30, 610-612 (2005).
[CrossRef] [PubMed]

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, "Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies," Phys. Rev. Lett. 84, 3294-3297 (2000).
[CrossRef] [PubMed]

S. Odoulov, "Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals," JETP Lett. 35, 10-13 (1982).

Odoulov, S. G.

A. Novikov, S. G. Odoulov, O. Oleinik, and B. I. Sturman, "Beam coupling, four-wave mixing and optical oscillation due to spatially oscillating photovoltaic currents in lithium niobate crystals," Ferroelectrics 75, 295-315 (1987).
[CrossRef]

Odulov, S. G.

S. G. Odulov and O. I. Oleĭnik, "Dynamic holograms formed in LiNbO3 crystals by the transverse photogalvanic effect," Sov. J. Quantum Electron. 13, 980-982 (1983).
[CrossRef]

Oleinik, O.

A. Novikov, S. G. Odoulov, O. Oleinik, and B. I. Sturman, "Beam coupling, four-wave mixing and optical oscillation due to spatially oscillating photovoltaic currents in lithium niobate crystals," Ferroelectrics 75, 295-315 (1987).
[CrossRef]

Oleinik, O. I.

S. G. Odulov and O. I. Oleĭnik, "Dynamic holograms formed in LiNbO3 crystals by the transverse photogalvanic effect," Sov. J. Quantum Electron. 13, 980-982 (1983).
[CrossRef]

Shumelyuk, A.

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, "Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies," Phys. Rev. Lett. 84, 3294-3297 (2000).
[CrossRef] [PubMed]

Shy, J. T.

Sincerbox, G. T.

G. T. Sincerbox, "History and Physical Principles," in Holographic Data Storage, J.H.Coufal, D.Psaltic, and G.T.Sincerbox, eds. (Springer, 2000), pp. 3-59.

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dzedzich, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Solymar, L.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).

Sturman, B. I.

A. Novikov, S. G. Odoulov, O. Oleinik, and B. I. Sturman, "Beam coupling, four-wave mixing and optical oscillation due to spatially oscillating photovoltaic currents in lithium niobate crystals," Ferroelectrics 75, 295-315 (1987).
[CrossRef]

B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, 1992).

Tarabrova, T.

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, "Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies," Phys. Rev. Lett. 84, 3294-3297 (2000).
[CrossRef] [PubMed]

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-234 (1974).
[CrossRef]

Wang, T. D.

Webb, D. J.

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).

Werner, M.

Woike, Th.

Zgonik, M.

M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407414 (2002).

Appl. Phys. B (1)

M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407414 (2002).

Appl. Phys. Lett. (2)

A. M. Glass, D. von der Linde, and T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-234 (1974).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dzedzich, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Ferroelectrics (1)

A. Novikov, S. G. Odoulov, O. Oleinik, and B. I. Sturman, "Beam coupling, four-wave mixing and optical oscillation due to spatially oscillating photovoltaic currents in lithium niobate crystals," Ferroelectrics 75, 295-315 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

S. Odoulov, "Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals," JETP Lett. 35, 10-13 (1982).

Opt. Lett. (2)

Phys. Rev. Lett. (1)

S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, "Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies," Phys. Rev. Lett. 84, 3294-3297 (2000).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

S. G. Odulov and O. I. Oleĭnik, "Dynamic holograms formed in LiNbO3 crystals by the transverse photogalvanic effect," Sov. J. Quantum Electron. 13, 980-982 (1983).
[CrossRef]

Other (4)

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

G. T. Sincerbox, "History and Physical Principles," in Holographic Data Storage, J.H.Coufal, D.Psaltic, and G.T.Sincerbox, eds. (Springer, 2000), pp. 3-59.

B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Phase-matching diagrams for diffraction from (a), (b) isotropically and (c), (d) anisotropically recorded gratings. Gray arrows show the recording processes. For every diagram in (b), (c), and (d) only one of two possible readout angles is shown for the third spatial harmonic (grating vector 3 K ), α i 1 3 and α a 1 3 , respectively, for isotropic and anisotropic readout.

Fig. 2
Fig. 2

Diffraction angles (in air) versus angle between the recording beams (in air) for (a), (b) isotropic recording and (c), (d) anisotropic recording for (a), (c) isotropic readout and (b), (d) anisotropic readout. The calculated dependencies are shown by curves (solid curves for readout with ordinarily polarized waves, dashed curves for readout with extraordinarily polarized waves), whereas dots show the angles measured in the experiment. The dependences shown in gray mark the cases in which the readout angles coincide with the recording angles. K, 2 K , and 3 K denote dependences for fundamental ( K ) and high-order ( 2 K , 3 K ) spatial harmonics.

Tables (1)

Tables Icon

Table 1 Diffraction Efficiency η for the K, 2 K , and 3 K Gratings for Different Recording and Readout Conditions a

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ ϵ m n ( r ) n 4 r m n l E l ( r ) ,
E sc = j ph σ ph ,
j m = β m n l A n A l * ,
β m n l = β m n l L + i δ m n k β k l C ,
λ 2 K i , a 2 4 π 2 = { [ n o 2 sin 2 ( β θ ) ] 1 2 [ n o , e 2 sin 2 ( β + θ ) ] 1 2 } 2 + [ sin ( β θ ) sin ( β + θ ) ] 2 ,
tan ψ i , a = [ n o 2 sin 2 ( β + θ ) ] 1 2 [ n o , e 2 sin 2 ( β θ ) ] 1 2 sin ( β + θ ) sin ( β θ ) .
sin α i 1 , 2 N = n o sin [ ψ ± arcsin ( N K λ 4 π n o ) ] ,
sin α a 1 , 2 N = n o , e sin { ψ + arcsin [ ( 4 π 2 n e , o 2 λ 2 4 π 2 n o , e 2 λ 2 + N 2 K 2 ) 1 2 2 N K n e , o ] } .

Metrics