Abstract

We realize an optical phase-conjugating mirror by coupling a χ(2) nonlinear crystal, performing difference-frequency generation, with a plane mirror. We use the device to recover the wavefronts upon transmission through multimode fibers and discuss the application to large-core amplifying fibers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Zel'dovich, V. Popovichev, V. Ragul'skii, F. Faizullov, and P. Lebedev, "Connection between the wave fronts of the reflected and exciting light in stimulated Mandelshtam-Brillouin scattering," Sov. Phys. JETP 15, 109-113 (1972).
  2. A. Yariv, "Three-dimensional pictorial transmission in optical fibers," Appl. Phys. Lett. 28, 88-89 (1976).
    [CrossRef]
  3. D. M. Pepper and A. Yariv, "Phase conjugation and real time olography," IEEE J. Quantum Electron. QE-14, 650-660 (1978).
    [CrossRef]
  4. G. He, "Optical phase conjugation: principles, techniques, and applications," Prog. Quantum Electron. 26, 131-191 (2002).
    [CrossRef]
  5. B. Fischer and S. Sternklar, "Image transmission and interferometry with multimode fibers using self-pumped phase conjugation," Appl. Phys. Lett. 46, 113-114 (1985).
    [CrossRef]
  6. V. Mikhailov, M. Bondani, F. Paleari, and A. Andreoni, "Optical phase conjugation in difference-frequency generation," J. Opt. Soc. Am. B 20, 1715-1723 (2003).
    [CrossRef]
  7. A. Gover, C. P. Lee, and A. Yariv, "Direct transmission of pictorial information in multimode optical fibers," J. Opt. Soc. Am. 66, 306-311 (1976).
    [CrossRef]
  8. F. Devaux, E. Guiot, and E. Lantz, "Image restoration through aberrant media by optical phase conjugation in type II three-wave mixing interaction," Opt. Lett. 23, 1597-1599 (1998).
    [CrossRef]
  9. P. Avizonis, F. Hopf, W. Bomberger, S. Jacobs, A. Tomita, and K. H. Womack, "Optical phase conjugation in a lithium formate crystal," Appl. Phys. Lett. 31, 435-437 (1977).
    [CrossRef]
  10. J. Limpert, A. Liem, M. Reich, M. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, J. Broeng, A. Petersson, and C. Jakobsen, "Low-nonlinearty single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004).
    [CrossRef] [PubMed]
  11. J. Nilsson, R. Pashotta, J. E. Caplan, and D. Hanna, "Yb3+-ring-doped fiber for high-energy pulse amplification," Opt. Lett. 22, 1092-1094 (1997).
    [CrossRef] [PubMed]
  12. M. Fermann, "Single-mode excitation of multimode fibers with ultrashort pulses," Opt. Lett. 23, 52-54 (1998).
    [CrossRef]
  13. D. Miller, "Time reversal of optical pulses by four-wave mixing," Opt. Lett. 5, 300-302 (1980).
    [CrossRef] [PubMed]
  14. D. Marom, D. Panasenko, R. Rokitski, P. Sun, and Y. Fainman, "Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves," Opt. Lett. 25, 132-134 (2000).
  15. A. Weiner, "Comment on 'Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves'," Opt. Lett. 25, 1207-1208 (2000).
    [CrossRef]
  16. D. Marom, D. Panasenko, R. Rokitski, P. Sun, and Y. Fainman, "Reply to 'Comment on 'Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves"," Opt. Lett. 25, 1209 (2000).
    [CrossRef]
  17. M. Tsang and D. Psaltis, "Dispersion and nonlinearity compensation by spectral phase conjugation," Opt. Lett. 28, 1558-1560 (2003).
    [CrossRef] [PubMed]

2004

2003

2002

G. He, "Optical phase conjugation: principles, techniques, and applications," Prog. Quantum Electron. 26, 131-191 (2002).
[CrossRef]

2000

1998

1997

1985

B. Fischer and S. Sternklar, "Image transmission and interferometry with multimode fibers using self-pumped phase conjugation," Appl. Phys. Lett. 46, 113-114 (1985).
[CrossRef]

1980

1978

D. M. Pepper and A. Yariv, "Phase conjugation and real time olography," IEEE J. Quantum Electron. QE-14, 650-660 (1978).
[CrossRef]

1977

P. Avizonis, F. Hopf, W. Bomberger, S. Jacobs, A. Tomita, and K. H. Womack, "Optical phase conjugation in a lithium formate crystal," Appl. Phys. Lett. 31, 435-437 (1977).
[CrossRef]

1976

1972

B. Zel'dovich, V. Popovichev, V. Ragul'skii, F. Faizullov, and P. Lebedev, "Connection between the wave fronts of the reflected and exciting light in stimulated Mandelshtam-Brillouin scattering," Sov. Phys. JETP 15, 109-113 (1972).

Andreoni, A.

Avizonis, P.

P. Avizonis, F. Hopf, W. Bomberger, S. Jacobs, A. Tomita, and K. H. Womack, "Optical phase conjugation in a lithium formate crystal," Appl. Phys. Lett. 31, 435-437 (1977).
[CrossRef]

Bomberger, W.

P. Avizonis, F. Hopf, W. Bomberger, S. Jacobs, A. Tomita, and K. H. Womack, "Optical phase conjugation in a lithium formate crystal," Appl. Phys. Lett. 31, 435-437 (1977).
[CrossRef]

Bondani, M.

Broeng, J.

Caplan, J. E.

Devaux, F.

Fainman, Y.

Faizullov, F.

B. Zel'dovich, V. Popovichev, V. Ragul'skii, F. Faizullov, and P. Lebedev, "Connection between the wave fronts of the reflected and exciting light in stimulated Mandelshtam-Brillouin scattering," Sov. Phys. JETP 15, 109-113 (1972).

Fermann, M.

Fischer, B.

B. Fischer and S. Sternklar, "Image transmission and interferometry with multimode fibers using self-pumped phase conjugation," Appl. Phys. Lett. 46, 113-114 (1985).
[CrossRef]

Gover, A.

Guiot, E.

Hanna, D.

He, G.

G. He, "Optical phase conjugation: principles, techniques, and applications," Prog. Quantum Electron. 26, 131-191 (2002).
[CrossRef]

Hopf, F.

P. Avizonis, F. Hopf, W. Bomberger, S. Jacobs, A. Tomita, and K. H. Womack, "Optical phase conjugation in a lithium formate crystal," Appl. Phys. Lett. 31, 435-437 (1977).
[CrossRef]

Jacobs, S.

P. Avizonis, F. Hopf, W. Bomberger, S. Jacobs, A. Tomita, and K. H. Womack, "Optical phase conjugation in a lithium formate crystal," Appl. Phys. Lett. 31, 435-437 (1977).
[CrossRef]

Jakobsen, C.

Lantz, E.

Lebedev, P.

B. Zel'dovich, V. Popovichev, V. Ragul'skii, F. Faizullov, and P. Lebedev, "Connection between the wave fronts of the reflected and exciting light in stimulated Mandelshtam-Brillouin scattering," Sov. Phys. JETP 15, 109-113 (1972).

Lee, C. P.

Liem, A.

Limpert, J.

Marom, D.

Mikhailov, V.

Miller, D.

Nilsson, J.

Nolte, S.

Paleari, F.

Panasenko, D.

Pashotta, R.

Pepper, D. M.

D. M. Pepper and A. Yariv, "Phase conjugation and real time olography," IEEE J. Quantum Electron. QE-14, 650-660 (1978).
[CrossRef]

Petersson, A.

Popovichev, V.

B. Zel'dovich, V. Popovichev, V. Ragul'skii, F. Faizullov, and P. Lebedev, "Connection between the wave fronts of the reflected and exciting light in stimulated Mandelshtam-Brillouin scattering," Sov. Phys. JETP 15, 109-113 (1972).

Psaltis, D.

Ragul'skii, V.

B. Zel'dovich, V. Popovichev, V. Ragul'skii, F. Faizullov, and P. Lebedev, "Connection between the wave fronts of the reflected and exciting light in stimulated Mandelshtam-Brillouin scattering," Sov. Phys. JETP 15, 109-113 (1972).

Reich, M.

Rokitski, R.

Schreiber, M.

Sternklar, S.

B. Fischer and S. Sternklar, "Image transmission and interferometry with multimode fibers using self-pumped phase conjugation," Appl. Phys. Lett. 46, 113-114 (1985).
[CrossRef]

Sun, P.

Tomita, A.

P. Avizonis, F. Hopf, W. Bomberger, S. Jacobs, A. Tomita, and K. H. Womack, "Optical phase conjugation in a lithium formate crystal," Appl. Phys. Lett. 31, 435-437 (1977).
[CrossRef]

Tsang, M.

Tunnermann, A.

Weiner, A.

Womack, K. H.

P. Avizonis, F. Hopf, W. Bomberger, S. Jacobs, A. Tomita, and K. H. Womack, "Optical phase conjugation in a lithium formate crystal," Appl. Phys. Lett. 31, 435-437 (1977).
[CrossRef]

Yariv, A.

D. M. Pepper and A. Yariv, "Phase conjugation and real time olography," IEEE J. Quantum Electron. QE-14, 650-660 (1978).
[CrossRef]

A. Gover, C. P. Lee, and A. Yariv, "Direct transmission of pictorial information in multimode optical fibers," J. Opt. Soc. Am. 66, 306-311 (1976).
[CrossRef]

A. Yariv, "Three-dimensional pictorial transmission in optical fibers," Appl. Phys. Lett. 28, 88-89 (1976).
[CrossRef]

Zel'dovich, B.

B. Zel'dovich, V. Popovichev, V. Ragul'skii, F. Faizullov, and P. Lebedev, "Connection between the wave fronts of the reflected and exciting light in stimulated Mandelshtam-Brillouin scattering," Sov. Phys. JETP 15, 109-113 (1972).

Zellmer, H.

Appl. Phys. Lett.

P. Avizonis, F. Hopf, W. Bomberger, S. Jacobs, A. Tomita, and K. H. Womack, "Optical phase conjugation in a lithium formate crystal," Appl. Phys. Lett. 31, 435-437 (1977).
[CrossRef]

A. Yariv, "Three-dimensional pictorial transmission in optical fibers," Appl. Phys. Lett. 28, 88-89 (1976).
[CrossRef]

B. Fischer and S. Sternklar, "Image transmission and interferometry with multimode fibers using self-pumped phase conjugation," Appl. Phys. Lett. 46, 113-114 (1985).
[CrossRef]

IEEE J. Quantum Electron.

D. M. Pepper and A. Yariv, "Phase conjugation and real time olography," IEEE J. Quantum Electron. QE-14, 650-660 (1978).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Prog. Quantum Electron.

G. He, "Optical phase conjugation: principles, techniques, and applications," Prog. Quantum Electron. 26, 131-191 (2002).
[CrossRef]

Sov. Phys. JETP

B. Zel'dovich, V. Popovichev, V. Ragul'skii, F. Faizullov, and P. Lebedev, "Connection between the wave fronts of the reflected and exciting light in stimulated Mandelshtam-Brillouin scattering," Sov. Phys. JETP 15, 109-113 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for the phase-conjugation experiments with the optical fibers. HS1, HS2, harmonic separators; L1, PH, L2, space filter for the infrared beam; Pol1, polarizing beam splitter; λ 2 , half-wave plate; Pol2, Pol3, Polaroid polarizers; L3, L4, fiber-coupling optics; BBO, β - BaBO 3 ; IrM, normal-incidence infrared mirror.

Fig. 2
Fig. 2

Intensity maps of the seed field at the (a)–(c) BBO crystal entrance plane and the (d)–(f) corresponding far fields for different fiber core diameters.

Fig. 3
Fig. 3

Object used for image recovery; in (c) we show the far field (FF) of (b). FT, Fourier transform.

Fig. 4
Fig. 4

(a)–(c) Restored images of the object in Fig. 3a and (d)–(f) restored far fields of the object in Fig. 3b, compare with Fig. 3c for different fiber core diameters.

Fig. 5
Fig. 5

Setup of the imaging part of the experiment of recovery of the quasi-single-mode beams.

Fig. 6
Fig. 6

(a) Incoming beam and (b)–(d) restored beams for different fiber core diameters. The far field is taken with a 300 μ m focal-length lens.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

φ 1 ( r , t ) = φ 1 ( 0 , 0 ) k ( ω 0 + δ ω ) k ̂ 1 r + ( ω + δ ω ) t ,
φ 2 R ( r , t ) = φ 3 ( 0 , 0 ) + π 2 φ 1 ( 0 , 0 ) + k ( ω 0 δ ω ) k ̂ 1 r + ( ω δ ω ) t .

Metrics