Abstract

We describe a new class of femtosecond laser cavity designs that are based on a Herriott-type multipass cavity (MPC) to effectively increase the length of a standard laser resonator. MPC laser designs can be used to increase the output pulse energies or to make more compact resonator configurations. A general theory for MPC lasers is developed by analyzing a periodic optical system, and the conditions are established for the case in which the q parameter of a Gaussian beam is left invariant after a single transit through the system. On the basis of this analysis, we determine the design criteria for two-mirror q-preserving MPCs. Practical laser cavity choices are presented and their trade-offs are examined. We also discuss various experimental setups that use these novel MPC designs to increase pulse energies while maintaining compact cavities.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode locked Ti:sapphire laser," Opt. Lett. 16, 42-44 (1991).
    [CrossRef] [PubMed]
  2. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, "Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime," Opt. Lett. 24, 631-633 (1999).
    [CrossRef]
  3. U. Morgner, F. X. Kärtner, S. H. Cho, H. A. Haus,J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, andT. Tschudi, "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser," Opt. Lett. 24, 411-413 (1999).
  4. T. Brabec, C. Spielmann, P. F. Curley, and F. Krausz, "Kerr lens mode locking," Opt. Lett. 17, 1292-1294 (1992).
    [CrossRef] [PubMed]
  5. V. Magni, G. Cerullo, and S. De Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993).
    [CrossRef]
  6. V. Magni, G. Cerullo, S. De Silvestri, and A. Monguzzi, "Astigmatism in Gaussian-beam self-focusing and in resonators for Kerr-lens mode locking," J. Opt. Soc. Am. B 12, 476-485 (1995).
    [CrossRef]
  7. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Analytic theory of additive pulse and Kerr lens mode locking," IEEE J. Quantum Electron. 28, 2086-2096 (1992).
    [CrossRef]
  8. V. I. Kalashnikov, V. P. Kalosha, I. G. Poloyko, and V. P. Mikhailov, "Optimal resonators for self-mode locking of continuous-wave solid-state lasers," J. Opt. Soc. Am. B 14, 964-969 (1997).
    [CrossRef]
  9. D. Herriott, H. Kogelnik, and R. Kompfner, "Off-axis paths in spherical mirror interferometers," Appl. Opt. 3, 523-526 (1964).
    [CrossRef]
  10. K. Read, F. Blonigen, N. Riccelli, M. Murnane, and H. Kapteyn, "Low-threshold operation of an ultrashort-pulse mode-locked Ti:sapphire laser," Opt. Lett. 21, 489-491 (1996).
    [CrossRef] [PubMed]
  11. J.-M. Hopkins, G. J. Valentine, W. Sibbett, J. A. d. Au, F. Morier-Genoud, U. Keller, and A. Valster, "Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser," Opt. Commun. 154, 54-58 (1998).
    [CrossRef]
  12. A. M. Kowalevicz, T. R. Schibli, F. X. Kaertner, and J. G. Fujimoto, "Ultralow-threshold Kerr-lens mode-locked TiAl2O3 laser," Opt. Lett. 27, 2037-2039 (2002).
  13. A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, "A 36nJ-15.5MHz extended-cavity Ti:sapphire oscillator," in Conference on Lasers and Electro-Optics (Optical Society of America, 1999), pp. 22-28.
  14. A. Poppe, M. Lenzner, F. Krausz, and C. Spielmann, "A sub-10fs, 2.5-MW Ti:sapphire oscillator," presented at the Ultrafast Optics Conference, Ascona, Switzerland, July 10-16, 1999.
  15. S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, "Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked TiAl203 laser operating with net positive and negative intracavity dispersion," Opt. Lett. 26, 560-562 (2001).
    [CrossRef]
  16. J. R. Pierce, Theory and Design of Electron Beams (Van Nostrand, 1954).
  17. S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, "Low-repetition-rate high-peak power Kerr-lens mode-locked Ti:Al2O3 laser using a multiple-pass cavity," Opt. Lett. 24, 417-419 (1999).
    [CrossRef]
  18. A. M. Kowalevicz, A. T. Zare, F. X. Kaertner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, and G. Angelow, "Generation of 150-nJ pulses form a multiple-pass cavity Kerr-lens mode-locked Ti:Al2O3 oscillator," Opt. Lett. 28, 1597-1599 (2003).
    [PubMed]
  19. A. Sennaroglu, A. M. Kowalevicz, F. X. Kaertner, and J. G. Fujimoto, "High-performance, compact, prismless, low-threshold 30-MHz Ti:sapphire laser," Opt. Lett. 28, 1674-1676 (2003).
    [CrossRef] [PubMed]
  20. R. P. Prasankumar, Y. Hirakawa, A. M. Kowalevicz, F. X. Kaertner, J. G. Fujimoto, and W. Knox, "An extended cavity femtosecond Cr:LiSAF laser pumped by low cost diode lasers," Opt. Express 11, 1265-1269 (2003).
    [CrossRef] [PubMed]
  21. A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004).
    [CrossRef] [PubMed]
  22. A. Sennaroglu and J. G. Fujimoto, "Design criteria for Herriott-type multi-pass cavities for ultrashot pulse lasers," Opt. Express 11, 1106-1113 (2003).
    [CrossRef] [PubMed]
  23. W. R. Trutna and R. L. Byer, "Multiple-pass Raman gain cell," Appl. Opt. 19, 301-312 (1980).
    [CrossRef] [PubMed]
  24. A. Sennaroglu, J. A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, "Compact femtosecond lasers based on novel multipass cavities," IEEE J. Quantum Electron. 40, 519-528 (2004).
    [CrossRef]
  25. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, "Design and fabrication of double-chirped mirrors," Opt. Lett. 22, 831-833 (1997).
    [CrossRef] [PubMed]
  26. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, "Investigation of the laser properties ofCr3+:LiSrGaF6," IEEE J. Quantum Electron. 28, 2612-2618 (1992).
    [CrossRef]
  27. B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
    [CrossRef]

2004 (2)

A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004).
[CrossRef] [PubMed]

A. Sennaroglu, J. A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, "Compact femtosecond lasers based on novel multipass cavities," IEEE J. Quantum Electron. 40, 519-528 (2004).
[CrossRef]

2003 (4)

2002 (2)

A. M. Kowalevicz, T. R. Schibli, F. X. Kaertner, and J. G. Fujimoto, "Ultralow-threshold Kerr-lens mode-locked TiAl2O3 laser," Opt. Lett. 27, 2037-2039 (2002).

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
[CrossRef]

2001 (1)

1999 (3)

1998 (1)

J.-M. Hopkins, G. J. Valentine, W. Sibbett, J. A. d. Au, F. Morier-Genoud, U. Keller, and A. Valster, "Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser," Opt. Commun. 154, 54-58 (1998).
[CrossRef]

1997 (2)

1996 (1)

1995 (1)

1993 (1)

V. Magni, G. Cerullo, and S. De Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

1992 (3)

T. Brabec, C. Spielmann, P. F. Curley, and F. Krausz, "Kerr lens mode locking," Opt. Lett. 17, 1292-1294 (1992).
[CrossRef] [PubMed]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Analytic theory of additive pulse and Kerr lens mode locking," IEEE J. Quantum Electron. 28, 2086-2096 (1992).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, "Investigation of the laser properties ofCr3+:LiSrGaF6," IEEE J. Quantum Electron. 28, 2612-2618 (1992).
[CrossRef]

1991 (1)

1980 (1)

1964 (1)

Agate, B.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
[CrossRef]

Angelow, G.

Apolonski, A.

Au, J. A. d.

J.-M. Hopkins, G. J. Valentine, W. Sibbett, J. A. d. Au, F. Morier-Genoud, U. Keller, and A. Valster, "Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser," Opt. Commun. 154, 54-58 (1998).
[CrossRef]

Blonigen, F.

Bouma, B. E.

Brabec, T.

Brown, C. T. A.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
[CrossRef]

Byer, R. L.

Cerullo, G.

V. Magni, G. Cerullo, S. De Silvestri, and A. Monguzzi, "Astigmatism in Gaussian-beam self-focusing and in resonators for Kerr-lens mode locking," J. Opt. Soc. Am. B 12, 476-485 (1995).
[CrossRef]

V. Magni, G. Cerullo, and S. De Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

Chai, B. H. T.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, "Investigation of the laser properties ofCr3+:LiSrGaF6," IEEE J. Quantum Electron. 28, 2612-2618 (1992).
[CrossRef]

Chase, L. L.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, "Investigation of the laser properties ofCr3+:LiSrGaF6," IEEE J. Quantum Electron. 28, 2612-2618 (1992).
[CrossRef]

Cho, S. H.

Cunningham, J. E.

Curley, P. F.

De Silvestri, S.

V. Magni, G. Cerullo, S. De Silvestri, and A. Monguzzi, "Astigmatism in Gaussian-beam self-focusing and in resonators for Kerr-lens mode locking," J. Opt. Soc. Am. B 12, 476-485 (1995).
[CrossRef]

V. Magni, G. Cerullo, and S. De Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

Dewald, S.

Fernandez, A.

Fuji, T.

Fujimoto, J. G.

A. Sennaroglu, J. A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, "Compact femtosecond lasers based on novel multipass cavities," IEEE J. Quantum Electron. 40, 519-528 (2004).
[CrossRef]

A. Sennaroglu and J. G. Fujimoto, "Design criteria for Herriott-type multi-pass cavities for ultrashot pulse lasers," Opt. Express 11, 1106-1113 (2003).
[CrossRef] [PubMed]

R. P. Prasankumar, Y. Hirakawa, A. M. Kowalevicz, F. X. Kaertner, J. G. Fujimoto, and W. Knox, "An extended cavity femtosecond Cr:LiSAF laser pumped by low cost diode lasers," Opt. Express 11, 1265-1269 (2003).
[CrossRef] [PubMed]

A. M. Kowalevicz, A. T. Zare, F. X. Kaertner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, and G. Angelow, "Generation of 150-nJ pulses form a multiple-pass cavity Kerr-lens mode-locked Ti:Al2O3 oscillator," Opt. Lett. 28, 1597-1599 (2003).
[PubMed]

A. Sennaroglu, A. M. Kowalevicz, F. X. Kaertner, and J. G. Fujimoto, "High-performance, compact, prismless, low-threshold 30-MHz Ti:sapphire laser," Opt. Lett. 28, 1674-1676 (2003).
[CrossRef] [PubMed]

A. M. Kowalevicz, T. R. Schibli, F. X. Kaertner, and J. G. Fujimoto, "Ultralow-threshold Kerr-lens mode-locked TiAl2O3 laser," Opt. Lett. 27, 2037-2039 (2002).

S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, "Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked TiAl203 laser operating with net positive and negative intracavity dispersion," Opt. Lett. 26, 560-562 (2001).
[CrossRef]

U. Morgner, F. X. Kärtner, S. H. Cho, H. A. Haus,J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, andT. Tschudi, "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser," Opt. Lett. 24, 411-413 (1999).

S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, "Low-repetition-rate high-peak power Kerr-lens mode-locked Ti:Al2O3 laser using a multiple-pass cavity," Opt. Lett. 24, 417-419 (1999).
[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Analytic theory of additive pulse and Kerr lens mode locking," IEEE J. Quantum Electron. 28, 2086-2096 (1992).
[CrossRef]

Furbach, A.

Gallmann, L.

Haus, H. A.

Heine, C.

Herriott, D.

Hirakawa, Y.

Hopkins, J.-M.

J.-M. Hopkins, G. J. Valentine, W. Sibbett, J. A. d. Au, F. Morier-Genoud, U. Keller, and A. Valster, "Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser," Opt. Commun. 154, 54-58 (1998).
[CrossRef]

Ippen, E. P.

Kaertner, F. X.

Kalashnikov, V. I.

Kalosha, V. P.

Kapteyn, H.

Kapteyn, H. C.

A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, "A 36nJ-15.5MHz extended-cavity Ti:sapphire oscillator," in Conference on Lasers and Electro-Optics (Optical Society of America, 1999), pp. 22-28.

Kärtner, F. X.

Kean, P. N.

Keller, U.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, "Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime," Opt. Lett. 24, 631-633 (1999).
[CrossRef]

J.-M. Hopkins, G. J. Valentine, W. Sibbett, J. A. d. Au, F. Morier-Genoud, U. Keller, and A. Valster, "Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser," Opt. Commun. 154, 54-58 (1998).
[CrossRef]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, "Design and fabrication of double-chirped mirrors," Opt. Lett. 22, 831-833 (1997).
[CrossRef] [PubMed]

Kemp, A. J.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
[CrossRef]

Knox, W.

Knox, W. H.

Kogelnik, H.

Kompfner, R.

Kowalevicz, A. M.

Kowalevicz, J. A. M.

A. Sennaroglu, J. A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, "Compact femtosecond lasers based on novel multipass cavities," IEEE J. Quantum Electron. 40, 519-528 (2004).
[CrossRef]

Krausz, F.

Kway, W. L.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, "Investigation of the laser properties ofCr3+:LiSrGaF6," IEEE J. Quantum Electron. 28, 2612-2618 (1992).
[CrossRef]

Lenzner, M.

A. Poppe, M. Lenzner, F. Krausz, and C. Spielmann, "A sub-10fs, 2.5-MW Ti:sapphire oscillator," presented at the Ultrafast Optics Conference, Ascona, Switzerland, July 10-16, 1999.

Libertun, A. R.

A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, "A 36nJ-15.5MHz extended-cavity Ti:sapphire oscillator," in Conference on Lasers and Electro-Optics (Optical Society of America, 1999), pp. 22-28.

Magni, V.

V. Magni, G. Cerullo, S. De Silvestri, and A. Monguzzi, "Astigmatism in Gaussian-beam self-focusing and in resonators for Kerr-lens mode locking," J. Opt. Soc. Am. B 12, 476-485 (1995).
[CrossRef]

V. Magni, G. Cerullo, and S. De Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

Matuschek, N.

Mikhailov, V. P.

Monguzzi, A.

Morf, R.

Morgner, U.

Morier-Genoud, F.

Murnane, M.

Murnane, M. M.

A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, "A 36nJ-15.5MHz extended-cavity Ti:sapphire oscillator," in Conference on Lasers and Electro-Optics (Optical Society of America, 1999), pp. 22-28.

Payne, S. A.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, "Investigation of the laser properties ofCr3+:LiSrGaF6," IEEE J. Quantum Electron. 28, 2612-2618 (1992).
[CrossRef]

Pierce, J. R.

J. R. Pierce, Theory and Design of Electron Beams (Van Nostrand, 1954).

Poloyko, I. G.

Poppe, A.

A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004).
[CrossRef] [PubMed]

A. Poppe, M. Lenzner, F. Krausz, and C. Spielmann, "A sub-10fs, 2.5-MW Ti:sapphire oscillator," presented at the Ultrafast Optics Conference, Ascona, Switzerland, July 10-16, 1999.

Prasankumar, R. P.

Read, K.

Riccelli, N.

Scheuer, V.

Schibli, T.

Schibli, T. R.

Sennaroglu, A.

Shelton, R.

A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, "A 36nJ-15.5MHz extended-cavity Ti:sapphire oscillator," in Conference on Lasers and Electro-Optics (Optical Society of America, 1999), pp. 22-28.

Sibbett, W.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
[CrossRef]

J.-M. Hopkins, G. J. Valentine, W. Sibbett, J. A. d. Au, F. Morier-Genoud, U. Keller, and A. Valster, "Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser," Opt. Commun. 154, 54-58 (1998).
[CrossRef]

D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode locked Ti:sapphire laser," Opt. Lett. 16, 42-44 (1991).
[CrossRef] [PubMed]

Smith, L. K.

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, "Investigation of the laser properties ofCr3+:LiSrGaF6," IEEE J. Quantum Electron. 28, 2612-2618 (1992).
[CrossRef]

Spence, D. E.

Spielmann, C.

T. Brabec, C. Spielmann, P. F. Curley, and F. Krausz, "Kerr lens mode locking," Opt. Lett. 17, 1292-1294 (1992).
[CrossRef] [PubMed]

A. Poppe, M. Lenzner, F. Krausz, and C. Spielmann, "A sub-10fs, 2.5-MW Ti:sapphire oscillator," presented at the Ultrafast Optics Conference, Ascona, Switzerland, July 10-16, 1999.

Steinmeyer, G.

Stormont, B.

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
[CrossRef]

Sutter, D. H.

Tilsch, M.

Trutna, W. R.

Tschudi, T.

Valentine, G. J.

J.-M. Hopkins, G. J. Valentine, W. Sibbett, J. A. d. Au, F. Morier-Genoud, U. Keller, and A. Valster, "Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser," Opt. Commun. 154, 54-58 (1998).
[CrossRef]

Valster, A.

J.-M. Hopkins, G. J. Valentine, W. Sibbett, J. A. d. Au, F. Morier-Genoud, U. Keller, and A. Valster, "Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser," Opt. Commun. 154, 54-58 (1998).
[CrossRef]

Zare, A. T.

Appl. Opt. (2)

IEEE J. Quantum Electron. (3)

A. Sennaroglu, J. A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, "Compact femtosecond lasers based on novel multipass cavities," IEEE J. Quantum Electron. 40, 519-528 (2004).
[CrossRef]

L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, "Investigation of the laser properties ofCr3+:LiSrGaF6," IEEE J. Quantum Electron. 28, 2612-2618 (1992).
[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Analytic theory of additive pulse and Kerr lens mode locking," IEEE J. Quantum Electron. 28, 2086-2096 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

V. Magni, G. Cerullo, and S. De Silvestri, "ABCD matrix analysis of propagation of Gaussian beams through Kerr media," Opt. Commun. 96, 348-355 (1993).
[CrossRef]

J.-M. Hopkins, G. J. Valentine, W. Sibbett, J. A. d. Au, F. Morier-Genoud, U. Keller, and A. Valster, "Efficient, low-noise, SESAM-based femtosecond Cr3+:LiSrAlF6 laser," Opt. Commun. 154, 54-58 (1998).
[CrossRef]

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, "Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers," Opt. Commun. 205, 207-213 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (12)

A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification," Opt. Lett. 29, 1366-1368 (2004).
[CrossRef] [PubMed]

S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, "Low-repetition-rate high-peak power Kerr-lens mode-locked Ti:Al2O3 laser using a multiple-pass cavity," Opt. Lett. 24, 417-419 (1999).
[CrossRef]

A. M. Kowalevicz, A. T. Zare, F. X. Kaertner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, and G. Angelow, "Generation of 150-nJ pulses form a multiple-pass cavity Kerr-lens mode-locked Ti:Al2O3 oscillator," Opt. Lett. 28, 1597-1599 (2003).
[PubMed]

A. Sennaroglu, A. M. Kowalevicz, F. X. Kaertner, and J. G. Fujimoto, "High-performance, compact, prismless, low-threshold 30-MHz Ti:sapphire laser," Opt. Lett. 28, 1674-1676 (2003).
[CrossRef] [PubMed]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, "Design and fabrication of double-chirped mirrors," Opt. Lett. 22, 831-833 (1997).
[CrossRef] [PubMed]

A. M. Kowalevicz, T. R. Schibli, F. X. Kaertner, and J. G. Fujimoto, "Ultralow-threshold Kerr-lens mode-locked TiAl2O3 laser," Opt. Lett. 27, 2037-2039 (2002).

K. Read, F. Blonigen, N. Riccelli, M. Murnane, and H. Kapteyn, "Low-threshold operation of an ultrashort-pulse mode-locked Ti:sapphire laser," Opt. Lett. 21, 489-491 (1996).
[CrossRef] [PubMed]

S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, "Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked TiAl203 laser operating with net positive and negative intracavity dispersion," Opt. Lett. 26, 560-562 (2001).
[CrossRef]

D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode locked Ti:sapphire laser," Opt. Lett. 16, 42-44 (1991).
[CrossRef] [PubMed]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, "Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime," Opt. Lett. 24, 631-633 (1999).
[CrossRef]

U. Morgner, F. X. Kärtner, S. H. Cho, H. A. Haus,J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, andT. Tschudi, "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser," Opt. Lett. 24, 411-413 (1999).

T. Brabec, C. Spielmann, P. F. Curley, and F. Krausz, "Kerr lens mode locking," Opt. Lett. 17, 1292-1294 (1992).
[CrossRef] [PubMed]

Other (3)

J. R. Pierce, Theory and Design of Electron Beams (Van Nostrand, 1954).

A. R. Libertun, R. Shelton, H. C. Kapteyn, and M. M. Murnane, "A 36nJ-15.5MHz extended-cavity Ti:sapphire oscillator," in Conference on Lasers and Electro-Optics (Optical Society of America, 1999), pp. 22-28.

A. Poppe, M. Lenzner, F. Krausz, and C. Spielmann, "A sub-10fs, 2.5-MW Ti:sapphire oscillator," presented at the Ultrafast Optics Conference, Ascona, Switzerland, July 10-16, 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Unfolded representation of a MPC. One round trip is represented by the matrix M T and composed of the two identical unit cells defined between Z R 1 and O and O and Z R 2 . The position of the starting ( Z R 1 ) and ending plane ( Z R 2 ) of the round trip can be varied by changing the value of a.

Fig. 2
Fig. 2

Plots showing the value of the individual matrix elements of the final matrix M T n , after three round trips through the MPC as defined in Fig. 1. Each plot shows the results for a different value of α. The vertical dashed lines show that the normalized separations that lead to q-preserving configurations are invariant with respect to choice of reference plane.

Fig. 3
Fig. 3

(a) Position of the Nth and ( N + 1 ) th spots at a given reference plane (solid circles) illustrating the possible ambiguity of angular advance. (b) and (c) By using the position of the beam at a second reference plane (open circles), the angular advance can be defined uniquely.

Fig. 4
Fig. 4

Plot of angular advance for flat–curved and curved–curved MPCs as a function of normalized separation d f . Note that the curved–curved cavities have a maximum angular advance of twice the flat–curved cavities allowing for twice as many q-preserving operating points.

Fig. 5
Fig. 5

Schematic representation of the spot patterns that result at either end of a flat–curved MPC with n = 7 for increasing values of m. The relative ratio of the radius of the spot pattern at the flat mirror to the curved mirror ( r 2 r 1 ) decreases with an increase in angular advance until it reaches zero when m = n ( θ = π ) .

Fig. 6
Fig. 6

Schematic representation of the four special unit cells. Depending on the choice of α, corresponding to the position of the initial reference plane, (a) antisymmetric or (b) symmetric unit cells result.

Fig. 7
Fig. 7

Schematic of a curved–curved MFC with n = 2 and m = 1 and end mirrors of radius R. Use of the D L unit cell illustrates that the cavity is one unit cell short of q-preserving on the (a) forward and (b) reverse transits, (c) Using D L and L D unit cells, a cavity can be constructed to be q-preserving on forward and reverse propagations with uncompensated length (dashed line). (d) Replacing M3 with a mirror of radius R 2 makes the cavity q-preserving on both transits with no uncompensated length.

Fig. 8
Fig. 8

Schematic of the possible q-preserving notched mirror MPC designs.

Fig. 9
Fig. 9

Schematic of the possible q-preserving MPC designs with pickoff mirrors.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

M T n = [ A D 2 sin n θ sin θ + cos n θ B sin n θ sin θ C sin n θ sin θ D A 2 sin n θ sin θ + cos n θ ] ,
cos θ = A + D 2 .
M T n = ( 1 ) m I whenever n θ = m π ,
d FC f = [ 1 cos ( θ ) ] ,
d CC f = 2 [ 1 cos ( 1 2 θ ) ] .
r 2 = r 1 [ ( 1 d 2 f 1 ) ( 1 d 2 f 2 ) ] 1 2 ,
r c = r 1 [ ( 1 d 2 f 1 ) + ( 1 d 2 f 2 ) + 2 ( 1 d 2 f 1 ) ( 1 d 2 f 2 ) 4 ( 1 d 2 f 2 ) ] 1 2 ,
r 2 FC = r 1 FC cos ( m π 2 n ) , r 2 CC = r 1 CC ,
r c FC = r 1 FC [ 5 + 3 cos ( m π n ) 8 ] 1 2 ,
r c CC = r 1 CC cos ( m π 4 n ) .
l i = d { 1 + [ ( 1 d 2 f 1 ) ( 1 d 2 f 2 ) ] 1 2 sin i π N sin [ ( M i ) π N ] } 1 ,
l i FC = d { 1 + cos ( M π N ) sin i π N sin [ ( M i ) π N ] } 1 ,
l i CC = d { 1 + sin i π N sin [ ( M i ) π N ] } 1 .

Metrics